Back to Search Start Over

An adaptive shortest-solution guided decimation approach to sparse high-dimensional linear regression

Authors :
Xue Yu
Yifan Sun
Hai-Jun Zhou
Source :
Scientific Reports, Vol 11, Iss 1, Pp 1-13 (2021)
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

Abstract High-dimensional linear regression model is the most popular statistical model for high-dimensional data, but it is quite a challenging task to achieve a sparse set of regression coefficients. In this paper, we propose a simple heuristic algorithm to construct sparse high-dimensional linear regression models, which is adapted from the shortest-solution guided decimation algorithm and is referred to as ASSD. This algorithm constructs the support of regression coefficients under the guidance of the shortest least-squares solution of the recursively decimated linear models, and it applies an early-stopping criterion and a second-stage thresholding procedure to refine this support. Our extensive numerical results demonstrate that ASSD outperforms LASSO, adaptive LASSO, vector approximate message passing, and two other representative greedy algorithms in solution accuracy and robustness. ASSD is especially suitable for linear regression problems with highly correlated measurement matrices encountered in real-world applications.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
11
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.0268d9b6333b4267a69995ec8ba2a9dd
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-021-03323-7