Back to Search Start Over

A Comprehensive Phytochemical Analysis of Sideritis scardica Infusion Using Orbitrap UHPLC-HRMS

Authors :
Dimitrina Zheleva-Dimitrova
Yulian Voynikov
Reneta Gevrenova
Vessela Balabanova
Source :
Molecules, Vol 29, Iss 1, p 204 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Sideritis scardica Griseb, also known as “mountain tea” and “Olympus tea” (Lamiaceae family) is an endemic plant from the mountainous regions of the Balkan Peninsula. In this study, we focused on an in-depth phytochemical analysis of S. scardica infusion using ultra-high-performance liquid chromatography hyphenated with high-resolution mass spectrometry (UHPLC–HRMS). Quantitative determination of the main secondary metabolites was carried out by UHPLC–HRMS analyses using the external standard method. The results revealed more than 100 metabolites, including five sugar acids and saccharides, 21 carboxylic, hydroxybenzoic, hydroxycinnamic acids, and derivatives, 15 acylquinic acids, 10 phenylpropanoid glycosides, four iridoid glycosides, 28 flavonoids, seven fatty acids, and four organosulfur compounds. Furthermore, a dereplication and fragmentation patterns of five caffeic acids oligomers and four acylhexaric acids was performed for the first time in S. scardica. Regarding the quantitative analysis, the phenylethanoid verbascoside (53) (151.54 ± 10.86 mg/g lyophilized infusion, li), the glycosides of isoscutellarein (78) (151.70 ± 14.78 mg/g li), methylisoscutelarein (82) (107.4 ± 9.07 mg/g li), and hypolaetin (79) (78.33 ± 3.29 mg/g li), as well as caffeic acid (20) (87.25 ± 6.54 mg/g li), were found to be the major compounds in S. scardica infusion. The performed state-of-the-art phytochemical analysis of S. scardica provides additional knowledge for the chemical constituents and usage of this valuable medicinal plant.

Details

Language :
English
ISSN :
14203049
Volume :
29
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
edsdoj.02883b51e204e489475131ea1d88ee2
Document Type :
article
Full Text :
https://doi.org/10.3390/molecules29010204