Back to Search Start Over

The Size of Activating and Inhibitory Killer Ig-like Receptor Nanoclusters Is Controlled by the Transmembrane Sequence and Affects Signaling

Authors :
Anna Oszmiana
David J. Williamson
Shaun-Paul Cordoba
David J. Morgan
Philippa R. Kennedy
Kevin Stacey
Daniel M. Davis
Source :
Cell Reports, Vol 15, Iss 9, Pp 1957-1972 (2016)
Publication Year :
2016
Publisher :
Elsevier, 2016.

Abstract

Super-resolution microscopy has revealed that immune cell receptors are organized in nanoscale clusters at cell surfaces and immune synapses. However, mechanisms and functions for this nanoscale organization remain unclear. Here, we used super-resolution microscopy to compare the surface organization of paired killer Ig-like receptors (KIR), KIR2DL1 and KIR2DS1, on human primary natural killer cells and cell lines. Activating KIR2DS1 assembled in clusters two-fold larger than its inhibitory counterpart KIR2DL1. Site-directed mutagenesis established that the size of nanoclusters is controlled by transmembrane amino acid 233, a lysine in KIR2DS1. Super-resolution microscopy also revealed two ways in which the nanoscale clustering of KIR affects signaling. First, KIR2DS1 and DAP12 nanoclusters are juxtaposed in the resting cell state but coalesce upon receptor ligation. Second, quantitative super-resolution microscopy revealed that phosphorylation of the kinase ZAP-70 or phosphatase SHP-1 is favored in larger KIR nanoclusters. Thus, the size of KIR nanoclusters depends on the transmembrane sequence and affects downstream signaling.

Subjects

Subjects :
Biology (General)
QH301-705.5

Details

Language :
English
ISSN :
22111247
Volume :
15
Issue :
9
Database :
Directory of Open Access Journals
Journal :
Cell Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.02afdb1a6f034e858c59ee75e79a8c7a
Document Type :
article
Full Text :
https://doi.org/10.1016/j.celrep.2016.04.075