Back to Search Start Over

Comparing the Coagulation Performance of Rice Husk, Cypress Leaves, and Eucalyptus Leaves Powders with That of Alum in Improving the Turbidity and pH of Some Local Water Sources in Bamenda, Cameroon

Authors :
Cornelius Tsamo
Eric Fru Zama
Ngu Elton Yerima
Ajingne Nelson Mandela Fuh
Source :
International Journal of Chemical Engineering, Vol 2021 (2021)
Publication Year :
2021
Publisher :
Wiley, 2021.

Abstract

In this study, the efficiencies of the use of rice husk, cypress, and Eucalyptus leaves biocoagulants as alternative to alum as chemical coagulant in reducing turbidity and stabilizing the pH of slaughterhouse wastewater and three other local drinking water sources were investigated. Two systems were used: one involving individual coagulants and the second involving mix alum and biocoagulant with fixed alum dose of 0.05 g and varying amounts of each biocoagulant type (0.05 to 5 g). Turbidity reduction, coagulation activity, and pH variation were used to characterize each system. Results show reduction in turbidity is higher in mixed coagulants than with individual coagulants. At 5 g each of alum, rice husk, cypress, and Eucalyptus leaves, the corresponding turbidity values, 8.3, 13.6, 14.5, and 20.3 NTU, were obtained compared to 7.3 with 0.05 alum and 5 g rice husk mixture, 8.7 NTU with 0.05 g alum and 5 g cypress leaves mixture, and 16.1 NTU with 0.05 g alum and 5 g Eucalyptus leaves mixture, for 37.3 NTU initial turbidity. The used biocoagulants individually show insignificant effect on the pH of coagulation-treated water. Alum has an insignificant effect up to 2 g. 0.05 g of each biocoagulant stabilizes the pH between 6.57 and 7.34 against 4.14 for alum. 0.05 g alum/0.05 g biocoagulant stabilized the pH of water between 6.32 and 7.41. The coagulation activities for individual systems follow the order alum > rice husk > cypress > Eucalyptus, and for mixed systems, alum/rice husk > alum/cypress > alum/Eucalyptus. Water with turbidity and pH values within the World Health Organization’s guideline value of

Subjects

Subjects :
Chemical engineering
TP155-156

Details

Language :
English
ISSN :
1687806X and 16878078
Volume :
2021
Database :
Directory of Open Access Journals
Journal :
International Journal of Chemical Engineering
Publication Type :
Academic Journal
Accession number :
edsdoj.03147522f86e4f1095f0dd2a45a372d8
Document Type :
article
Full Text :
https://doi.org/10.1155/2021/6858936