Back to Search Start Over

Scalable training on scalable infrastructures for programmable hardware

Authors :
Lorusso Marco
Bonacorsi Daniele
Travaglini Riccardo
Salomoni Davide
Veronesi Paolo
Michelotto Diego
Mariotti Mirko
Bianchini Giulio
Costantini Alessandro
Duma Doina Cristina
Source :
EPJ Web of Conferences, Vol 295, p 08014 (2024)
Publication Year :
2024
Publisher :
EDP Sciences, 2024.

Abstract

Machine learning (ML) and deep learning (DL) techniques are increasingly influential in High Energy Physics, necessitating effective computing infrastructures and training opportunities for users and developers, particularly concerning programmable hardware like FPGAs. A gap exists in accessible ML/DL on FPGA tutorials catering to diverse hardware specifications. To bridge this gap, collaborative efforts by INFN-Bologna, the University of Bologna, and INFN-CNAF produced a pilot course using virtual machines, inhouse cloud platforms, and AWS instances, utilizing Docker containers for interactive exercises. Additionally, the Bond Machine software ecosystem, capable of generating FPGA-synthesizable computer architectures, is explored as a simplified approach for teaching FPGA programming.

Subjects

Subjects :
Physics
QC1-999

Details

Language :
English
ISSN :
2100014X
Volume :
295
Database :
Directory of Open Access Journals
Journal :
EPJ Web of Conferences
Publication Type :
Academic Journal
Accession number :
edsdoj.03b21943270f4e34a6383baf18ba94de
Document Type :
article
Full Text :
https://doi.org/10.1051/epjconf/202429508014