Back to Search Start Over

MeCP2 dysfunction prevents proper BMP signaling and neural progenitor expansion in brain organoid

Authors :
Hyowon Hong
Sae‐Bom Yoon
Jung Eun Park
Jung In Lee
Hyun Young Kim
Hye Jin Nam
Heeyeong Cho
Source :
Annals of Clinical and Translational Neurology, Vol 10, Iss 7, Pp 1170-1185 (2023)
Publication Year :
2023
Publisher :
Wiley, 2023.

Abstract

Abstract Objectives Sporadic mutations in MeCP2 are a hallmark of Rett syndrome (RTT). Many RTT brain organoid models have exhibited pathogenic phenotypes such as decreased spine density and small size of soma with altered electrophysiological signals. However, previous models are mainly focused on the phenotypes observed in the late phase and rarely provide clues for the defect of neural progenitors which generate different types of neurons and glial cells. Methods We newly established the RTT brain organoid model derived from MeCP2‐truncated iPS cells which were genetically engineered by CRISPR/Cas9 technology. By immunofluorescence imaging, we studied the development of NPC pool and its fate specification into glutamatergic neurons or astrocytes in RTT organoids. By total RNA sequencing, we investigated which signaling pathways were altered during the early brain development in RTT organoids. Results Dysfunction of MeCP2 caused the defect of neural rosette formation in the early phase of cortical development. In total transcriptome analysis, BMP pathway‐related genes are highly associated with MeCP2 depletion. Moreover, levels of pSMAD1/5 and BMP target genes are excessively increased, and treatment of BMP inhibitors partially rescues the cell cycle progression of neural progenitors. Subsequently, MeCP2 dysfunction reduced the glutamatergic neurogenesis and induced overproduction of astrocytes. Nevertheless, early inhibition of BMP pathway rescued VGLUT1 expression and suppressed astrocyte maturation. Interpretation Our results demonstrate that MeCP2 is required for the expansion of neural progenitor cells by modulating BMP pathway at early stages of development, and this influence persists during neurogenesis and gliogenesis at later stages of brain organoid development.

Details

Language :
English
ISSN :
23289503
Volume :
10
Issue :
7
Database :
Directory of Open Access Journals
Journal :
Annals of Clinical and Translational Neurology
Publication Type :
Academic Journal
Accession number :
edsdoj.03b73bafb8fc4b3d8d1f08571f8f3e97
Document Type :
article
Full Text :
https://doi.org/10.1002/acn3.51799