Back to Search Start Over

The Neurobiological Basis of Cognitive Side Effects of Electroconvulsive Therapy: A Systematic Review

Authors :
Adriana Bassa
Teresa Sagués
Daniel Porta-Casteràs
Pilar Serra
Erika Martínez-Amorós
Diego J. Palao
Marta Cano
Narcís Cardoner
Source :
Brain Sciences, Vol 11, Iss 10, p 1273 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Decades of research have consistently demonstrated the efficacy of electroconvulsive therapy (ECT) for the treatment of major depressive disorder (MDD), but its clinical use remains somewhat restricted because of its cognitive side effects. The aim of this systematic review is to comprehensively summarize current evidence assessing potential biomarkers of ECT-related cognitive side effects. Based on our systematic search of human studies indexed in PubMed, Scopus, and Web of Knowledge, a total of 29 studies evaluating patients with MDD undergoing ECT were reviewed. Molecular biomarkers studies did not consistently identify concentration changes in plasma S-100 protein, neuron-specific enolase (NSE), or Aβ peptides significantly associated with cognitive performance after ECT. Importantly, these findings suggest that ECT-related cognitive side effects cannot be explained by mechanisms of neural cell damage. Notwithstanding, S-100b protein and Aβ40 peptide concentrations, as well as brain-derived neurotrophic factor (BDNF) polymorphisms, have been suggested as potential predictive biomarkers of cognitive dysfunction after ECT. In addition, recent advances in brain imaging have allowed us to identify ECT-induced volumetric and functional changes in several brain structures closely related to memory performance such as the hippocampus. We provide a preliminary framework to further evaluate neurobiological cognitive vulnerability profiles of patients with MDD treated with ECT.

Details

Language :
English
ISSN :
20763425
Volume :
11
Issue :
10
Database :
Directory of Open Access Journals
Journal :
Brain Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.0431af392334494fa0884262489b1299
Document Type :
article
Full Text :
https://doi.org/10.3390/brainsci11101273