Back to Search Start Over

Grain boundary widening controls siderite (FeCO3) replacement of limestone (CaCO3)

Authors :
Juliane Weber
Vitalii Starchenko
Jan Ilavsky
Lawrence F. Allard
Jitendra Mata
Lisa Debeer-Schmitt
Carolyn Grace Cooke
Ken Littrell
Lilin He
Rui Zhang
Andrew G. Stack
Lawrence M. Anovitz
Source :
Scientific Reports, Vol 13, Iss 1, Pp 1-15 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract The microstructure of minerals and rocks can significantly alter reaction rates. This study focuses on identifying transport paths in low porosity rocks based on the hypothesis that grain boundary widening accelerates reactions in which one mineral is replaced by another (replacement reaction). We conducted a time series of replacement experiments of three limestones (CaCO3) of different microstructures and solid impurity contents using FeCl2. Reacted solids were analyzed using chemical imaging, small angle X-ray and neutron scattering and Raman spectroscopy. In high porosity limestones replacement is reaction controlled and complete replacement was observed within 2 days. In low porosity limestones that contain 1–2% dolomite impurities and are dominated by grain boundaries, a reaction rim was observed whose width did not change with reaction time. Siderite (FeCO3) nucleation was observed in all parts of the rock cores indicating the percolation of the solution throughout the complete core. Dolomite impurities were identified to act as nucleation sites leading to growth of crystals that exert force on the CaCO3 grains. Widening of grain boundaries beyond what is expected based on dissolution and thermal grain expansion was observed in the low porosity marble containing dolomite impurities. This leads to a self-perpetuating cycle of grain boundary widening and reaction acceleration instead of reaction front propagation.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.045a5a5fb3c493d9ede314ca3fe6dcc
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-023-30757-y