Back to Search Start Over

Mechanical overstimulation causes acute injury and synapse loss followed by fast recovery in lateral-line neuromasts of larval zebrafish

Authors :
Melanie Holmgren
Michael E Ravicz
Kenneth E Hancock
Olga Strelkova
Dorina Kallogjeri
Artur A Indzhykulian
Mark E Warchol
Lavinia Sheets
Source :
eLife, Vol 10 (2021)
Publication Year :
2021
Publisher :
eLife Sciences Publications Ltd, 2021.

Abstract

Excess noise damages sensory hair cells, resulting in loss of synaptic connections with auditory nerves and, in some cases, hair-cell death. The cellular mechanisms underlying mechanically induced hair-cell damage and subsequent repair are not completely understood. Hair cells in neuromasts of larval zebrafish are structurally and functionally comparable to mammalian hair cells but undergo robust regeneration following ototoxic damage. We therefore developed a model for mechanically induced hair-cell damage in this highly tractable system. Free swimming larvae exposed to strong water wave stimulus for 2 hr displayed mechanical injury to neuromasts, including afferent neurite retraction, damaged hair bundles, and reduced mechanotransduction. Synapse loss was observed in apparently intact exposed neuromasts, and this loss was exacerbated by inhibiting glutamate uptake. Mechanical damage also elicited an inflammatory response and macrophage recruitment. Remarkably, neuromast hair-cell morphology and mechanotransduction recovered within hours following exposure, suggesting severely damaged neuromasts undergo repair. Our results indicate functional changes and synapse loss in mechanically damaged lateral-line neuromasts that share key features of damage observed in noise-exposed mammalian ear. Yet, unlike the mammalian ear, mechanical damage to neuromasts is rapidly reversible.

Details

Language :
English
ISSN :
2050084X
Volume :
10
Database :
Directory of Open Access Journals
Journal :
eLife
Publication Type :
Academic Journal
Accession number :
edsdoj.054f1334e50d48d3b96da9188ffa6f0f
Document Type :
article
Full Text :
https://doi.org/10.7554/eLife.69264