Back to Search Start Over

Proteomics analysis and proteogenomic characterization of different physiopathological human lenses

Authors :
Xiaohang Wu
Zhenzhen Liu
Xiayin Zhang
Dongni Wang
Erping Long
Jinghui Wang
Wangting Li
Weiyi Lai
Qianzhong Cao
Kunhua Hu
Weirong Chen
Haotian Lin
Yizhi Liu
Source :
BMC Ophthalmology, Vol 17, Iss 1, Pp 1-13 (2017)
Publication Year :
2017
Publisher :
BMC, 2017.

Abstract

Abstract Background The aim of the present study was to identify the proteomic differences among human lenses in different physiopathological states and to screen for susceptibility genes/proteins via proteogenomic characterization. Methods The total proteomes identified across the regenerative lens with secondary cataract (RLSC), congenital cataract (CC) and age-related cataract (ARC) groups were compared to those of normal lenses using isobaric tagging for relative and absolute protein quantification (iTRAQ). The up-regulated proteins between the groups were subjected to biological analysis. Whole exome sequencing (WES) was performed to detect genetic variations. Results The most complete human lens proteome to date, which consisted of 1251 proteins, including 55.2% previously unreported proteins, was identified across the experimental groups. Bioinformatics functional annotation revealed the common involvement of cellular metabolic processes, immune responses and protein folding disturbances among the groups. RLSC-over-expressed proteins were characteristically enriched in the intracellular immunological signal transduction pathways. The CC groups featured biological processes relating to gene expression and vascular endothelial growth factor (VEGF) signaling transduction, whereas the molecular functions corresponding to external stress were specific to the ARC groups. Combined with WES, the proteogenomic characterization narrowed the list to 16 candidate causal molecules. Conclusions These findings revealed common final pathways with diverse upstream regulation of cataractogenesis in different physiopathological states. This proteogenomic characterization shows translational potential for detecting susceptibility genes/proteins in precision medicine.

Details

Language :
English
ISSN :
14712415
Volume :
17
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Ophthalmology
Publication Type :
Academic Journal
Accession number :
edsdoj.05ef8d4a8e424a418eff308aa19705a2
Document Type :
article
Full Text :
https://doi.org/10.1186/s12886-017-0642-9