Back to Search Start Over

Higher levels of myelin are associated with higher resistance against tau pathology in Alzheimer’s disease

Authors :
Anna Rubinski
Nicolai Franzmeier
Anna Dewenter
Ying Luan
Ruben Smith
Olof Strandberg
Rik Ossenkoppele
Martin Dichgans
Oskar Hansson
Michael Ewers
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
Source :
Alzheimer’s Research & Therapy, Vol 14, Iss 1, Pp 1-13 (2022)
Publication Year :
2022
Publisher :
BMC, 2022.

Abstract

Abstract Background In Alzheimer’s disease (AD), fibrillar tau initially occurs locally and progresses preferentially between closely connected regions. However, the underlying sources of regional vulnerability to tau pathology remain unclear. Previous brain-autopsy findings suggest that the myelin levels—which differ substantially between white matter tracts in the brain—are a key modulating factor of region-specific susceptibility to tau deposition. Here, we investigated whether myelination differences between fiber tracts of the human connectome are predictive of the interregional spreading of tau pathology in AD. Methods We included two independently recruited samples consisting of amyloid-PET-positive asymptomatic and symptomatic elderly individuals, in whom tau-PET was obtained at baseline (ADNI: n = 275; BioFINDER-1: n = 102) and longitudinally in a subset (ADNI: n = 123, mean FU = 1.53 [0.69–3.95] years; BioFINDER-1: n = 39, mean FU = 1.87 [1.21–2.78] years). We constructed MRI templates of the myelin water fraction (MWF) in 200 gray matter ROIs and connecting fiber tracts obtained from adult cognitively normal participants. Using the same 200 ROI brain-parcellation atlas, we obtained tau-PET ROI values from each individual in ADNI and BioFINDER-1. In a spatial regression analysis, we first tested the association between cortical myelin and group-average tau-PET signal in the amyloid-positive and control groups. Secondly, employing a previously established approach of modeling tau-PET spreading based on functional connectivity between ROIs, we estimated in a linear regression analysis, whether the level of fiber-tract myelin modulates the association between functional connectivity and longitudinal tau-PET spreading (i.e., covariance) between ROIs. Results We found that higher myelinated cortical regions show lower tau-PET uptake (ADNI: rho = − 0.267, p

Details

Language :
English
ISSN :
17589193
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Alzheimer’s Research & Therapy
Publication Type :
Academic Journal
Accession number :
edsdoj.06f1a6bae9d74d0782c1d4ebcb60ec24
Document Type :
article
Full Text :
https://doi.org/10.1186/s13195-022-01074-9