Back to Search
Start Over
Bounded contribution of human early visual cortex to the topographic anisotropy in spatial extent perception
- Source :
- Communications Biology, Vol 7, Iss 1, Pp 1-15 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract To interact successfully with objects, it is crucial to accurately perceive their spatial extent, an enclosed region they occupy in space. Although the topographic representation of space in the early visual cortex (EVC) has been favored as a neural correlate of spatial extent perception, its exact nature and contribution to perception remain unclear. Here, we inspect the topographic representations of human individuals’ EVC and perception in terms of how much their anisotropy is influenced by the orientation (co-axiality) and radial position (radiality) of stimuli. We report that while the anisotropy is influenced by both factors, its direction is primarily determined by radiality in EVC but by co-axiality in perception. Despite this mismatch, the individual differences in both radial and co-axial anisotropy are substantially shared between EVC and perception. Our findings suggest that spatial extent perception builds on EVC’s spatial representation but requires an additional mechanism to transform its topographic bias.
- Subjects :
- Biology (General)
QH301-705.5
Subjects
Details
- Language :
- English
- ISSN :
- 23993642
- Volume :
- 7
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Communications Biology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.0739623953ba468eb9352ef5f7c88b15
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s42003-024-05846-x