Back to Search Start Over

Curing the Toxicity of Multi-Walled Carbon Nanotubes through Native Small-molecule Drugs

Authors :
Wei Qi
Longlong Tian
Wenzhen An
Qiang Wu
Jianli Liu
Can Jiang
Jun Yang
Bing Tang
Yafeng Zhang
Kangjun Xie
Xinling Wang
Zhan Li
Wangsuo Wu
Source :
Scientific Reports, Vol 7, Iss 1, Pp 1-14 (2017)
Publication Year :
2017
Publisher :
Nature Portfolio, 2017.

Abstract

Abstract With the development and application of nanotechnology, large amounts of nanoparticles will be potentially released to the environment and possibly cause many severe health problems. Although the toxicity of nanoparticles has been investigated, prevention and treatment of damages caused by nanoparticles have been rarely studied. Therefore, isotope tracing and improved CT imaging techniques were used to investigate the biodistribution influence between oMWCNTs(oxidized multi-walled carbon nanotubes) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/or simvastatin (TD) in vivo. What’s more, biochemical indices in plasma and tissue histology were measured to further study therapeutic effects on the damages of oMWCNTs in mice. Isotope tracing and improved CT imaging results showed that low dosages of DOPC and TD didn’t affect the distribution of oMWCNTs in mice; conversely, the distribution and metabolism of DOPC and TD were influenced by oMWCNTs. Moreover, DOPC and/or TD improved the biocompatibility of oMWCNTs in erythrocyte suspension in vitro. Biochemical index and histopathological results indicated that DOPC and TD didn’t prevent injuries caused by oMWCNTs effectively. But TD showed a good therapeutic effect for damages. This study is the first to investigate prevention and treatment effects of drugs on damages caused by oMWCNTs and provides new insights and breakthroughs for management of nanoparticles on health hazards.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
7
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.079b91fb74e44a1d8220f8cf33bc9e45
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-017-02770-5