Back to Search
Start Over
Adaptive Nonsingular Fast Terminal Sliding Mode Control for Shape Memory Alloy Actuated System
- Source :
- Actuators, Vol 13, Iss 9, p 367 (2024)
- Publication Year :
- 2024
- Publisher :
- MDPI AG, 2024.
-
Abstract
- Due to its high power-to-weight ratio, low weight, and silent operation, shape memory alloy (SMA) is widely used as a muscle-like soft actuator in intelligent bionic robot systems. However, hysteresis nonlinearity and multi-valued mapping behavior can severely impact trajectory tracking accuracy. This paper proposes an adaptive nonsingular fast terminal sliding mode control (ANFTSMC) scheme aimed at enhancing position tracking performance in SMA-actuated systems by addressing hysteresis nonlinearity, uncertain dynamics, and external disturbances. Firstly, a simplified third-order actuator model is developed and a variable gain extended state observer (VGESO) is employed to estimate unmodeled dynamics and external disturbances within finite time. Secondly, a novel nonsingular fast terminal sliding mode control (NFTSMC) law is designed to overcome singularity issues, reduce chattering, and guarantee finite-time convergence of the system states. Finally, the ANFTSMC scheme, integrating NFTSMC with VGESO, is proposed to achieve precise position tracking for the prosthetic hand. The convergence of the closed-loop control system is validated using Lyapunov’s stability theory. Experimental results demonstrate that the external pulse disturbance error of ANFTSMC is 8.19°, compared to 19.21° for the comparative method. Furthermore, the maximum absolute error for ANFTSMC is 0.63°, whereas the comparative method shows a maximum absolute error of 1.03°. These results underscore the superior performance of the proposed ANFTSMC algorithm.
- Subjects :
- shape memory alloy (SMA)
hysteresis nonlinearity
variable gain extended state observer
nonsingular fast terminal sliding mode control
adaptive control
Materials of engineering and construction. Mechanics of materials
TA401-492
Production of electric energy or power. Powerplants. Central stations
TK1001-1841
Subjects
Details
- Language :
- English
- ISSN :
- 20760825
- Volume :
- 13
- Issue :
- 9
- Database :
- Directory of Open Access Journals
- Journal :
- Actuators
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.08345a4c59d4efda3d4e11a882e3e1e
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/act13090367