Back to Search Start Over

circUBR5 promotes ribosome biogenesis and induces docetaxel resistance in triple-negative breast cancer cell lines via the miR-340-5p/CMTM6/c-MYC axis

Authors :
Xuedong Wang
Xinping Wang
Juan Gu
Yilei Wei
Yueping Wang
Source :
Neoplasia: An International Journal for Oncology Research, Vol 59, Iss , Pp 101062- (2025)
Publication Year :
2025
Publisher :
Elsevier, 2025.

Abstract

Objective: Docetaxel (DTX) represents an effective chemotherapeutic agent for treating triple-negative breast cancer (TNBC), but the efficacy is strongly limited by drug resistance. c-MYC-mediated ribosome biogenesis is considered a feasible strategy to confront chemoresistance in BC. We elucidated the impact of CMTM6 on TNBC DTX chemoresistance by governing c-MYC-mediated ribosome biogenesis, and its upstream ceRNA regulatory pathways. Methods: DTX-resistant TNBC cells MDA-MB-231R and HCC1937R were generated by exposing sensitive cells MDA-MB-231 and HCC1937 to escalating doses of DTX. The expression patterns of CMTM6 and c-MYC were assessed by Western blot. The relationships between CMTM6 and miR-340-5p, circUBR5 and miR-340-5p were determined using bioinformatics analysis, luciferase assay, RIP, RNA in situ hybridization and biotin-labeled miR co-precipitation assay. Following ectopic expression and depletion experiments in DTX-resistant cells, cell chemoresistance, apoptosis, colony formation and nascent protein synthesis were evaluated. Results: CMTM6 expression was elevated in DTX-resistant TNBC cells. CMTM6 knockdown enhanced apoptosis of DTX-resistant TNBC cells and increased their sensitivity to DTX by blocking c-MYC-mediated ribosome biogenesis. Mechanistically, miR-340-5p targeted CMTM6 and negatively regulated the expression of CMTM6 in DTX-resistant TNBC cells. Moreover, circUBR5 attenuated the repression on CMTM6 expression as a ceRNA for miR-340-5p. circUBR5 knockdown inactivated c-MYC-mediated ribosome biogenesis, and therefore enhanced DTX efficacy by promoting miR-340-5p binding to CMTM6. Conclusion: circUBR5 knockdown facilitated miR-340-5p-targeted CMTM6 via a ceRNA mechanism, thereby reducing c-MYC-mediated ribosome biogenesis and accelerating chemosensitization of DTX-resistant TNBC cells, which offered a theoretical guideline for clinical research on the feasibility of inhibiting ribosome biogenesis to reduce TNBC chemoresistance.

Details

Language :
English
ISSN :
14765586
Volume :
59
Issue :
101062-
Database :
Directory of Open Access Journals
Journal :
Neoplasia: An International Journal for Oncology Research
Publication Type :
Academic Journal
Accession number :
edsdoj.0851449ee3d74fc7a4fe451c76b536f2
Document Type :
article
Full Text :
https://doi.org/10.1016/j.neo.2024.101062