Back to Search
Start Over
Existence of stable standing waves for the nonlinear Schrödinger equation with inverse-power potential and combined power-type and Choquard-type nonlinearities
- Source :
- AIMS Mathematics, Vol 6, Iss 6, Pp 5837-5850 (2021)
- Publication Year :
- 2021
- Publisher :
- AIMS Press, 2021.
-
Abstract
- In this paper, we investigate the existence of stable standing waves for the nonlinear Schr\"{o}dinger equation with inverse-power potential and combined power-type and Choquard-type nonlinearities \[ i \partial_t\psi+\triangle \psi+\frac{\gamma}{|x|^\alpha}\psi+\lambda_1|\psi|^p\psi +\lambda_2(I_\beta\ast|\psi|^q)|\psi|^{q-2}\psi=0,~~(t,x)\in [0,T^\star)\times \mathbb{R}^N. \] By using concentration compactness principle, when one nonlinearity is focusing and $L^2$-critical, the other is defocusing and $L^2$-supercritical, we prove the existence and orbital stability of standing waves. We extend the results of Li-Zhao in paper \cite {13} to the $L^2$-critical and $L^2$-supercritical nonlinearities.
Details
- Language :
- English
- ISSN :
- 24736988
- Volume :
- 6
- Issue :
- 6
- Database :
- Directory of Open Access Journals
- Journal :
- AIMS Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.0897580fcde1459e82eabf158a424742
- Document Type :
- article
- Full Text :
- https://doi.org/10.3934/math.2021345?viewType=HTML