Back to Search
Start Over
Photovoltaic Performance of Dye-Sensitized Solar Cells with a Solid-State Redox Mediator Based on an Ionic Liquid and Hole-Transporting Triphenylamine Compound
- Source :
- Energies, Vol 15, Iss 8, p 2765 (2022)
- Publication Year :
- 2022
- Publisher :
- MDPI AG, 2022.
-
Abstract
- An ionic liquid, 1-methyl-3-propylimidazolium iodide (MPII), was solidified with an organic hole-transporting material, 4,4′,4″-tris[(3-methylphenyl)phenylamino]triphenylamine (m-MTDATA), and the resulting solid-state redox mediator (RM) (m-MTDATA-solidified MPII) was employed in solar devices to realize solid-state dye-sensitized solar cells (sDSSCs). Solar devices with only MPII or m-MTDATA as an RM showed almost 0 mA/cm2 of short-circuit current (Jsc) and thus 0% power conversion efficiency (PCE). However, an sDSSC with the m-MTDATA-solidified MPII exhibited 4.61 mA/cm2 of Jsc and 1.80% PCE. It was found that the increased Jsc and PCE were due to the formation of I3−, which resulted from a reaction between the iodie (I−) of MPII and m-MTDATA cation. Further enhancement in both Jsc (9.43 mA/cm2) and PCE (4.20%) was observed in an sDSSC with 4-tert butylpyridine (TBP) as well as with m-MTDATA-solidified MPII. We attributed the significant increase (about 230%) in PCE to the lowered diffusion resistance of I−/I3− ions in the solid-state RM composed of the m-MTDATA-solidified MPII and TBP, arising from TBP’s role as a plasticizer.
Details
- Language :
- English
- ISSN :
- 19961073
- Volume :
- 15
- Issue :
- 8
- Database :
- Directory of Open Access Journals
- Journal :
- Energies
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.08b295d7fec49ab81979ffafe779e13
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/en15082765