Back to Search Start Over

Photovoltaic Performance of Dye-Sensitized Solar Cells with a Solid-State Redox Mediator Based on an Ionic Liquid and Hole-Transporting Triphenylamine Compound

Authors :
Minseon Kong
Da Hyeon Oh
Baekseo Choi
Yoon Soo Han
Source :
Energies, Vol 15, Iss 8, p 2765 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

An ionic liquid, 1-methyl-3-propylimidazolium iodide (MPII), was solidified with an organic hole-transporting material, 4,4′,4″-tris[(3-methylphenyl)phenylamino]triphenylamine (m-MTDATA), and the resulting solid-state redox mediator (RM) (m-MTDATA-solidified MPII) was employed in solar devices to realize solid-state dye-sensitized solar cells (sDSSCs). Solar devices with only MPII or m-MTDATA as an RM showed almost 0 mA/cm2 of short-circuit current (Jsc) and thus 0% power conversion efficiency (PCE). However, an sDSSC with the m-MTDATA-solidified MPII exhibited 4.61 mA/cm2 of Jsc and 1.80% PCE. It was found that the increased Jsc and PCE were due to the formation of I3−, which resulted from a reaction between the iodie (I−) of MPII and m-MTDATA cation. Further enhancement in both Jsc (9.43 mA/cm2) and PCE (4.20%) was observed in an sDSSC with 4-tert butylpyridine (TBP) as well as with m-MTDATA-solidified MPII. We attributed the significant increase (about 230%) in PCE to the lowered diffusion resistance of I−/I3− ions in the solid-state RM composed of the m-MTDATA-solidified MPII and TBP, arising from TBP’s role as a plasticizer.

Details

Language :
English
ISSN :
19961073
Volume :
15
Issue :
8
Database :
Directory of Open Access Journals
Journal :
Energies
Publication Type :
Academic Journal
Accession number :
edsdoj.08b295d7fec49ab81979ffafe779e13
Document Type :
article
Full Text :
https://doi.org/10.3390/en15082765