Back to Search Start Over

Prompt Electrodeposition of Ni Nanodots on Ni Foam to Construct a High-Performance Water-Splitting Electrode: Efficient, Scalable, and Recyclable

Authors :
Hongtao Yu
Ting Quan
Shilin Mei
Zdravko Kochovski
Wei Huang
Hong Meng
Yan Lu
Source :
Nano-Micro Letters, Vol 11, Iss 1, Pp 1-13 (2019)
Publication Year :
2019
Publisher :
SpringerOpen, 2019.

Abstract

Abstract In past decades, Ni-based catalytic materials and electrodes have been intensively explored as low-cost hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalysts for water splitting. With increasing demands for Ni worldwide, simplifying the fabrication process, increasing Ni recycling, and reducing waste are tangible sustainability goals. Here, binder-free, heteroatom-free, and recyclable Ni-based bifunctional catalytic electrodes were fabricated via a one-step quick electrodeposition method. Typically, active Ni nanodot (NiND) clusters are electrodeposited on Ni foam (NF) in Ni(NO3)2 acetonitrile solution. After drying in air, NiO/NiND composites are obtained, leading to a binder-free and heteroatom-free NiO/NiNDs@NF catalytic electrode. The electrode shows high efficiency and long-term stability for catalyzing hydrogen and oxygen evolution reactions at low overpotentials (10 η HER = 119 mV and 50 η OER = 360 mV) and can promote water catalysis at 1.70 V@10 mA cm−2. More importantly, the recovery of raw materials (NF and Ni(NO3)2) is quite easy because of the solubility of NiO/NiNDs composites in acid solution for recycling the electrodes. Additionally, a large-sized (S ~ 70 cm2) NiO/NiNDs@NF catalytic electrode with high durability has also been constructed. This method provides a simple and fast technology to construct high-performance, low-cost, and environmentally friendly Ni-based bifunctional electrocatalytic electrodes for water splitting.

Details

Language :
English
ISSN :
23116706 and 21505551
Volume :
11
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nano-Micro Letters
Publication Type :
Academic Journal
Accession number :
edsdoj.08cbec0d23d34f7e9d50bdfd78dd02e4
Document Type :
article
Full Text :
https://doi.org/10.1007/s40820-019-0269-x