Back to Search Start Over

Cyber Threats Detection in Smart Environments Using SDN-Enabled DNN-LSTM Hybrid Framework

Authors :
Mohammad Al Razib
Danish Javeed
Muhammad Taimoor Khan
Reem Alkanhel
Mohammed Saleh Ali Muthanna
Source :
IEEE Access, Vol 10, Pp 53015-53026 (2022)
Publication Year :
2022
Publisher :
IEEE, 2022.

Abstract

Internet of Things (IoT) is an instantly exacerbated communication technology that is manifesting miraculous effectuation to revolutionize conventional means of network communication. The applications of IoT are compendiously encompassing our prevalent lifestyle and the integration of IoT with other technologies makes this application spectrum even more latitudinous. However, this admissibility also introduces IoT with a pervasive array of imperative security hazards that demands noteworthy solutions to be swamped. In this scientific study, we proposed Deep Learning (DL) driven Software Defined Networking (SDN) enabled Intrusion Detection System (IDS) to combat emerging cyber threats in IoT. Our proposed model (DNNLSTM) is capable to encounter a tremendous class of common as well as less frequently occurring cyber threats in IoT communications. The proposed model is trained on CICIDS 2018 dataset, and its performance is evaluated on several decisive parameters i.e Accuracy, Precision, Recall, and F1-Score. Furthermore, the designed framework is analytically compared with relevant classifiers, i.e., DNNGRU, and BLSTM for appropriate validation. An exhaustive performance comparison is also conducted between the proposed system and a few preeminent solutions from the literature. The proposed design has circumvented the existing literature with unprecedented performance repercussions such as 99.55% accuracy, 99.36% precision, 99.44% recall, and 99.42% F1-score.

Details

Language :
English
ISSN :
21693536
Volume :
10
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.098aa781b78c48a9a302226a261c699a
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2022.3172304