Back to Search Start Over

Study on the Effect of '3D-rGO' Buffer Layer on the Microstructure and Properties of SiO2f/SiO2 and TC4 Brazed Joint

Authors :
Peng Liu
Qiang Ma
Yongwei Chen
Shujin Chen
Jie Zhu
Peng He
Xiaojiang Chen
Xiao Jin
Bin Zheng
Source :
Materials, Vol 17, Iss 6, p 1394 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Brazing a SiO2f/SiO2 composite with metals is often faced with two problems: poor wettability with the brazing alloy and high residual stress in the joint. To overcome these problems, we report a combined method of selective etching and depositing reduced graphene oxide (rGO) on the surface of a SiO2f/SiO2 composite (3D-rGO-SiO2f/SiO2) to assist brazing with TC4. After the combined treatment, a “3D-rGO” buffer layer formed on the surface layer of the SiO2f/SiO2, and the contact angle was reduced from 130° to 38°, which meant the wettability of active brazing alloy on the surface of SiO2f/SiO2 was obviously improved. In addition, the “3D-rGO” buffer layer contributed to fully integrating the brazing alloy and SiO2f/SiO2; then, the infiltration of the brazing alloy into the surface layer of the SiO2f/SiO2 was enhanced and formed the reduced graphene oxide with a pinning structure in the three dimensional (“3D-pinning-rGO”) structure. Moreover, the joining area of the brazing alloy and SiO2f/SiO2 was expanded and the mismatch degree between the SiO2f/SiO2 and TC4 was reduced, which was achieved by the “3D-pinning-rGO” structure. Furthermore, the concentration of the residual stress in the SiO2f/SiO2-TC4 joints transferred from the SiO2f/SiO2 to the braided quartz fibers, and the residual stress reduced from 142 MPa to 85 MPa. Furthermore, the 3D-pinning-rGO layer facilitated the transfer of heat between the substrates during the brazing process. Finally, the shear strength of the SiO2f/SiO2-TC4 joints increased from 12.5 MPa to 43.7 MPa by the selective etching and depositing rGO method.

Details

Language :
English
ISSN :
19961944
Volume :
17
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.09aa3a089864b8c8f3f9711f0d9c4f1
Document Type :
article
Full Text :
https://doi.org/10.3390/ma17061394