Back to Search Start Over

Targeted Inhibition of Matrix Metalloproteinase-8 Prevents Aortic Dissection in a Murine Model

Authors :
Chengxin Zhang
Kaiyuan Niu
Meixia Ren
Xinmiao Zhou
Zhisheng Yang
Mei Yang
Xinxin Wang
Jun Luo
Yue Shao
Cheng Zhang
Dan Chen
Shan Gao
Shenglin Ge
Qingchen Wu
Qingzhong Xiao
Source :
Cells, Vol 11, Iss 20, p 3218 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Aortic dissection (AD) is a lethal aortic pathology without effective medical treatments since the underlying pathological mechanisms responsible for AD remain elusive. Matrix metalloproteinase-8 (MMP8) has been previously identified as a key player in atherosclerosis and arterial remodeling. However, the functional role of MMP8 in AD remains largely unknown. Here, we report that an increased level of MMP8 was observed in 3-aminopropionitrile fumarate (BAPN)-induced murine AD. AD incidence and aortic elastin fragmentation were markedly reduced in MMP8-knockout mice. Importantly, pharmacologic inhibition of MMP8 significantly reduced the AD incidence and aortic elastin fragmentation. We observed less inflammatory cell accumulation, a lower level of aortic inflammation, and decreased smooth muscle cell (SMC) apoptosis in MMP8-knockout mice. In line with our previous observation that MMP8 cleaves Ang I to generate Ang II, BAPN-treated MMP8-knockout mice had increased levels of Ang I, but decreased levels of Ang II and lower blood pressure. Additionally, we observed a decreased expression level of vascular cell adhesion molecule-1 (VCAM1) and a reduced level of reactive oxygen species (ROS) in MMP8-knockout aortas. Mechanistically, our data show that the Ang II/VCAM1 signal axis is responsible for MMP8-mediated inflammatory cell invasion and transendothelial migration, while MMP8-mediated SMC inflammation and apoptosis are attributed to Ang II/ROS signaling. Finally, we observed higher levels of aortic and serum MMP8 in patients with AD. We therefore provide new insights into the molecular mechanisms underlying AD and identify MMP8 as a potential therapeutic target for this life-threatening aortic disease.

Details

Language :
English
ISSN :
11203218 and 20734409
Volume :
11
Issue :
20
Database :
Directory of Open Access Journals
Journal :
Cells
Publication Type :
Academic Journal
Accession number :
edsdoj.09beafbff41d4a389d65577d5a09f254
Document Type :
article
Full Text :
https://doi.org/10.3390/cells11203218