Back to Search Start Over

Synthesis of gold nanoparticles using Sambucus wightiana extract and investigation of its antimicrobial, anti-inflammatory, antioxidant and analgesic activities

Authors :
Fazli Khuda
Zafar Ul Haq
Ihsan Ilahi
Rahim Ullah
Ayub Khan
Hassan Fouad
Atif Ali Khan Khalil
Zaki Ullah
Muhammad Umar Khayam Sahibzada
Yasar Shah
Muhammad Abbas
Tayyaba Iftikhar
Gaber El-Saber Batiha
Source :
Arabian Journal of Chemistry, Vol 14, Iss 10, Pp 103343- (2021)
Publication Year :
2021
Publisher :
Elsevier, 2021.

Abstract

Resistance to antimicrobial agents are rendering therapies ineffective around the globe, leading to increased mortality and treatment cost. Likewise, non-steroidal anti-inflammatory drugs (NSAIDs) and analgesics possess several side effects particularly peptic ulcer and gastrointestinal problems. Metallic nanoparticles significantly enhances the therapeutic efficacy of natural extracts owing to improved bioavailability thereby lowering the dose and side effects. The purpose of this research was to investigate the efficacy of gold nanoparticles (AuNPs). In this study, Sambucus wightiana whole plant aqueous extract was used for rapid and eco-friendly synthesis of AuNPs. They were characterized by various analytical techniques including UV–Visible spectroscopy (UV–Vis), transmission and scanning electron microscopy (TEM and SEM), energy dispersive X-ray spectroscopy (EDX), Zetasizer, X-ray diffractometer (XRD) and Fourier transform infra-red spectroscopy (FTIR). The UV–Vis spectra revealed a distinct absorption peak at 539 nm; TEM and SEM images confirmed the formation of heterogeneously dispersed AuNPs with an average area of 152.77 nm2 and width of 15.96 nm. The AuNPs showed significant inhibitory zones against Escherichia coli (25 mm), Staphylococcus epidermis (23 mm) and Salmonella enteritidis (18 mm) with MIC values 0.13, 0.11 and 0.16 mg/ml, respectively. Among fungal strains it showed highest percent inhibition against Fusarium solani (90%) and Microsporum canis (80%) with MIC values 0.02 and 0.01 mg/ml, respectively. It showed maximum anti-inflammatory activity (43.70, 48.80 and 57.08%) at 20 mg/kg dose at both early and late hours of inflammation. Likewise, in vitro models depicted concentration dependent inhibition of 5-LOX and COX-2 enzymes. AuNPs showed highest antioxidant activity (68.7% inhibition) at 1000 µg/ml, compared to ascorbic acid that showed 77.8% inhibition at the same concentration. Similarly, it exhibited significant (P ≤ 0.001) dose dependent analgesic effect with maximum inhibition (56.22%) at 20 mg/kg. In conclusion, the above findings suggest that AuNPs should be studied further in order to develop safe and effective formulations.

Details

Language :
English
ISSN :
18785352
Volume :
14
Issue :
10
Database :
Directory of Open Access Journals
Journal :
Arabian Journal of Chemistry
Publication Type :
Academic Journal
Accession number :
edsdoj.0a3880d27a3c42768c507eacf748c9bb
Document Type :
article
Full Text :
https://doi.org/10.1016/j.arabjc.2021.103343