Back to Search Start Over

Long non-coding RNAs in bone formation: Key regulators and therapeutic prospects

Authors :
Jiang Chun
Wang Peng
Tan ZhenWei
Zhang Yin
Source :
Open Life Sciences, Vol 19, Iss 1, Pp 144855-8 (2024)
Publication Year :
2024
Publisher :
De Gruyter, 2024.

Abstract

Recent scientific investigations have revealed the intricate mechanisms underlying bone formation, emphasizing the essential role of long non-coding RNAs (lncRNAs) as critical regulators. This process, essential for skeletal strength and functionality, involves the transformation of mesenchymal stem cells into osteoblasts and subsequent deposition of bone matrix. lncRNAs, including HOX transcript antisense RNA (HOTAIR), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), differentiation antagonizing non-coding RNA (DANCR), and maternally expressed gene 3 (MEG3), have emerged as prominent players in this regulatory network. HOTAIR modulates osteoblast differentiation by interacting with chromatin-modifying enzymes, while MALAT1 regulates osteogenic differentiation through microRNA interactions. DANCR collaborates with Runx2 to fine-tune osteoblast differentiation, and MEG3 orchestrates multiple signaling pathways crucial for bone formation. Moreover, other lncRNAs such as H19, lncRNA for enhancing osteogenesis 3, rhabdomyosarcoma 2-associated transcript, urothelial cancer associated 1, taurine up-regulated gene 1, and nuclear enriched abundant transcript 1 contribute to the complex regulatory network governing osteoblast activities. Understanding the precise roles of these lncRNAs offers promising avenues for developing innovative therapeutic strategies targeting bone-related disorders like osteoporosis. Overall, this review summarizes the pivotal role of lncRNAs in bone formation, highlighting their potential as targets for future research endeavors aimed at advancing therapeutic interventions in bone diseases.

Details

Language :
English
ISSN :
23915412
Volume :
19
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Open Life Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.0aa97375c6904d5a81b3aa99d8b0d37b
Document Type :
article
Full Text :
https://doi.org/10.1515/biol-2022-0908