Back to Search Start Over

Acrylamide exposure increases cardiovascular risk of general adult population probably by inducing oxidative stress, inflammation, and TGF-β1: A prospective cohort study

Authors :
Bin Wang
Xing Wang
Linling Yu
Wei Liu
Jiahao Song
Lieyang Fan
Min Zhou
Meng Yang
Jixuan Ma
Man Cheng
Weihong Qiu
Ruyi Liang
Dongming Wang
Yanjun Guo
Weihong Chen
Source :
Environment International, Vol 164, Iss , Pp 107261- (2022)
Publication Year :
2022
Publisher :
Elsevier, 2022.

Abstract

Acrylamide (ACR) exposure and consequent health hazards are alarming public health issues that attract worldwide concern. The World Health Organization urges more researches into health hazards from ACR exposure. However, whether and how ACR exposure increases cardiovascular risk remain unclear, and we sought to address these issues in this prospective cohort study conducted on 3024 general adults with 3-year follow-up (N = 871 at follow-up). Individual urinary ACR metabolites (N-Acetyl-S-(2-carbamoylethyl)-L-cysteine [AAMA] and N-Acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine [GAMA]) as credible biomarkers of ACR exposure were detected to assess their cross-sectional and longitudinal relationships with 10-year cardiovascular disease (CVD) risk, a well measure of overall cardiovascular risk. Besides, biomarkers of oxidative stress (urinary 8-hydroxy-deoxyguanosine [8-OHdG] and 8-iso-prostaglandin-F2α [8-iso-PGF2α]) and inflammation (circulating mean platelet volume [MPV] and plasma C-reactive protein [CRP]) as well as plasma transforming growth factor-β1 (TGF-β1) were measured to assess their mediating/mechanistic roles in the relationships of ACR metabolites with 10-year CVD risk. We found AAMA, GAMA, and ΣUAAM (AAMA + GAMA) were cross-sectionally and longitudinally related to increased 10-year CVD risk with odds ratios (95% confidence intervals [CIs]) of 1.32 (1.04, 1.70), 1.81 (1.36, 2.40), and 1.40 (1.07, 1.82), respectively, and risk ratios (95% CIs) of 1.99 (1.10, 3.60), 2.48 (1.27, 4.86), and 2.13 (1.15, 3.94), respectively. Furthermore, 8-OHdG, 8-iso-PGF2α, MPV, CRP, and TGF-β1 were found to significantly mediate 8.06–48.92% of the ACR metabolites-associated 10-year CVD risk increment. In summary, daily ACR exposure of general adults was cross-sectionally and longitudinally associated with increased cardiovascular risk, which was partly mediated by oxidative stress, inflammation, and TGF-β1, suggesting for the first time that ACR exposure may well increase cardiovascular risk of general adult population partly by mechanisms of inducing oxidative stress, inflammation, and TGF-β1. Our findings have important public health implications that provide potent epidemiological evidence and vital mechanistic insight into cardiovascular risk increment from ACR exposure.

Details

Language :
English
ISSN :
01604120
Volume :
164
Issue :
107261-
Database :
Directory of Open Access Journals
Journal :
Environment International
Publication Type :
Academic Journal
Accession number :
edsdoj.0b143aa0945144c6b5e20e8d90878510
Document Type :
article
Full Text :
https://doi.org/10.1016/j.envint.2022.107261