Back to Search Start Over

L2MXception: an improved Xception network for classification of peach diseases

Authors :
Na Yao
Fuchuan Ni
Ziyan Wang
Jun Luo
Wing-Kin Sung
Chaoxi Luo
Guoliang Li
Source :
Plant Methods, Vol 17, Iss 1, Pp 1-13 (2021)
Publication Year :
2021
Publisher :
BMC, 2021.

Abstract

Abstract Background Peach diseases can cause severe yield reduction and decreased quality for peach production. Rapid and accurate detection and identification of peach diseases is of great importance. Deep learning has been applied to detect peach diseases using imaging data. However, peach disease image data is difficult to collect and samples are imbalance. The popular deep networks perform poor for this issue. Results This paper proposed an improved Xception network named as L2MXception which ensembles regularization term of L2-norm and mean. With the peach disease image dataset collected, results on seven mainstream deep learning models were compared in details and an improved loss function was integrated with regularization term L2-norm and mean (L2M Loss). Experiments showed that the Xception model with L2M Loss outperformed the current best method for peach disease prediction. Compared to the original Xception model, the validation accuracy of L2MXception was up to 93.85%, increased by 28.48%. Conclusions The proposed L2MXception network may have great potential in early identification of peach diseases.

Details

Language :
English
ISSN :
17464811
Volume :
17
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Plant Methods
Publication Type :
Academic Journal
Accession number :
edsdoj.0b2833e3e2a348c9946e14de07ddb35b
Document Type :
article
Full Text :
https://doi.org/10.1186/s13007-021-00736-3