Back to Search Start Over

Carbon nanotube-based van der Waals heterojunction electrodes for high-performance intrinsically stretchable organic photoelectric transistors

Authors :
Kai Liu
Yangshuang Bian
Junhua Kuang
Qingyuan Li
Yanwei Liu
Wei Shi
Zhiyuan Zhao
Xin Huang
Zhiheng Zhu
Yunlong Guo
Yunqi Liu
Source :
Giant, Vol 7, Iss , Pp 100060- (2021)
Publication Year :
2021
Publisher :
Elsevier, 2021.

Abstract

Intrinsically stretchable organic field-effect transistors (STOFETs) that behave much like skin, have garnered widespread attention and demonstrated potential to more comfortable wearing electronics. Despite considerable efforts being exerted in stretchable hybrid polymeric semiconductors to achieve high-mobility and high-stretchability STOFETs, carbon nanotubes (CNTs) as ideal electrode materials, its interfacial quality seldom attracts research interests. Herein, we demonstrate a novel and general strategy on flexible CNT-based heterojunction electrodes by pentacene modification layer to enable high-performance and functional STOFETs. Pentacene transition layer can reduce the surface roughness and tune the heterogeneity of functional groups on the CNT thin film, as well as enhance the compatibility and van der Waals contact between CNT electrodes and organic semiconductors. The experimental results reveal that the carrier mobility of the resulting STOFETs increases by 2-3 times and the subthreshold slope decreases by 5 times compared with unmodified devices. The on-current/off-current ratio reaches nearly 107, which is approximately 1000 times as high as unmodified devices, and the highest value for stretchable organic transistors reported so far. Furthermore, STOFETs with heterojunction electrodes demonstrate better performance homogeneity and higher strain-independent capability. Noteworthy, these are the first intrinsically stretchable organic phototransistors (STOPTs) with superior photoswitching performances and high strain tolerance developed.

Details

Language :
English
ISSN :
26665425
Volume :
7
Issue :
100060-
Database :
Directory of Open Access Journals
Journal :
Giant
Publication Type :
Academic Journal
Accession number :
edsdoj.0b37c4fb327e438b999b62fd738810f4
Document Type :
article
Full Text :
https://doi.org/10.1016/j.giant.2021.100060