Back to Search Start Over

Research on Thermal Dissipation Characteristics Based on the Physical Laws of Forced Vibration in Granular Assemblies

Authors :
Shengwu Zhang
Wei Xu
Chiming Wang
Yuanchao Zhang
Yanan Li
Jianwei Cheng
Source :
Applied Sciences, Vol 14, Iss 13, p 5864 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Particle damping technology is applied in vibration and noise reduction because of its good broadband vibration reduction effect. The energy transfer and loss between particles are keys to the role of damping. This paper investigates the relationship between the thermal energy dissipation caused by the collision of particles and the input energy. The temperature rise characteristics under different vibration states are studied. The results show significant differences in the thermal dissipation characteristics of granular assemblies for different vibration states. Under equivalent excitation amplitudes, the frequency increases, and the thermal loss of the particles increases. At the same frequency, the excitation amplitudes increase, and the thermal loss of the particles decreases. Granular assemblies in strong vibrational states, such as a gas-like state, have intense vibrations and apparent temperature-increasing effects. However, in this vibration state, the input energy to the particles is considerable, and the thermal loss accounts for a small proportion of the total energy. In states such as solid-like states, micro-vibrational states, and intermediate vibrational states, the particles interact closely, and the input energy for the particles is small. Additionally, the movement of the particles is not intense, and the thermal loss accounts for a large proportion of the total energy. The thermal loss of the particles also shows a frequency variation characteristic. According to the different temperature rise characteristics of the particles, the proportion of thermal energy consumption is analyzed. The research shows that the proportion of thermal energy consumption is not more than 70%, so there are other forms of energy consumption in the vibration reduction and energy consumption of the particles.

Details

Language :
English
ISSN :
20763417
Volume :
14
Issue :
13
Database :
Directory of Open Access Journals
Journal :
Applied Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.0bb192e0dbc446fc98f487f766db4079
Document Type :
article
Full Text :
https://doi.org/10.3390/app14135864