Back to Search Start Over

Long-Term Transplant Effects of iPSC-RPE Monolayer in Immunodeficient RCS Rats

Authors :
Deepthi S. Rajendran Nair
Danhong Zhu
Ruchi Sharma
Juan Carlos Martinez Camarillo
Kapil Bharti
David R. Hinton
Mark S. Humayun
Biju B. Thomas
Source :
Cells, Vol 10, Iss 11, p 2951 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Retinal pigment epithelium (RPE) replacement therapy is evolving as a feasible approach to treat age-related macular degeneration (AMD). In many preclinical studies, RPE cells are transplanted as a cell suspension into immunosuppressed animal eyes and transplant effects have been monitored only short-term. We investigated the long-term effects of human Induced pluripotent stem-cell-derived RPE (iPSC-RPE) transplants in an immunodeficient Royal College of Surgeons (RCS) rat model, in which RPE dysfunction led to photoreceptor degeneration. iPSC-RPE cultured as a polarized monolayer on a nanoengineered ultrathin parylene C scaffold was transplanted into the subretinal space of 28-day-old immunodeficient RCS rat pups and evaluated after 1, 4, and 11 months. Assessment at early time points showed good iPSC-RPE survival. The transplants remained as a monolayer, expressed RPE-specific markers, performed phagocytic function, and contributed to vision preservation. At 11-months post-implantation, RPE survival was observed in only 50% of the eyes that were concomitant with vision preservation. Loss of RPE monolayer characteristics at the 11-month time point was associated with peri-membrane fibrosis, immune reaction through the activation of macrophages (CD 68 expression), and the transition of cell fate (expression of mesenchymal markers). The overall study outcome supports the therapeutic potential of RPE grafts despite the loss of some transplant benefits during long-term observations.

Details

Language :
English
ISSN :
20734409
Volume :
10
Issue :
11
Database :
Directory of Open Access Journals
Journal :
Cells
Publication Type :
Academic Journal
Accession number :
edsdoj.0be3be12448847bb9cacd7559b8922c4
Document Type :
article
Full Text :
https://doi.org/10.3390/cells10112951