Back to Search Start Over

Effect of Electrode Spacing on the Performance of a Membrane-Less Microbial Fuel Cell with Magnetite as an Additive

Authors :
Nhlanganiso Ivan Madondo
Sudesh Rathilal
Babatunde Femi Bakare
Emmanuel Kweinor Tetteh
Source :
Molecules, Vol 28, Iss 6, p 2853 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

A microbial fuel cell (MFC) is a bioelectrochemical system that can be employed for the generation of electrical energy under microbial activity during wastewater treatment practices. The optimization of electrode spacing is perhaps key to enhancing the performance of an MFC. In this study, electrode spacing was evaluated to determine its effect on the performance of MFCs. The experimental work was conducted utilizing batch digesters with electrode spacings of 2.0 cm, 4.0 cm, 6.0 cm, and 8.0 cm. The results demonstrate that the performance of the MFC improved when the electrode spacing increased from 2.0 to 6.0 cm. However, the efficiency decreased after 6.0 cm. The digester with an electrode spacing of 6.0 cm enhanced the efficiency of the MFC, which led to smaller internal resistance and greater biogas production of 662.4 mL/g VSfed. The electrochemical efficiency analysis demonstrated higher coulombic efficiency (68.7%) and electrical conductivity (177.9 µS/cm) for the 6.0 cm, which was evident from the enrichment of electrochemically active microorganisms. With regards to toxic contaminant removal, the same digester also performed well, revealing removals of over 83% for chemical oxygen demand (COD), total solids (TS), total suspended solids (TSS), and volatile solids (VS). Therefore, these results indicate that electrode spacing is a factor affecting the performance of an MFC, with an electrode spacing of 6.0 cm revealing the greatest potential to maximize biogas generation and the degradability of wastewater biochemical matter.

Details

Language :
English
ISSN :
14203049
Volume :
28
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
edsdoj.0c08ed305794e0f99cbc719e4992727
Document Type :
article
Full Text :
https://doi.org/10.3390/molecules28062853