Back to Search Start Over

Non-Contact Breathing Monitoring Using Sleep Breathing Detection Algorithm (SBDA) Based on UWB Radar Sensors

Authors :
Muhammad Husaini
Latifah Munirah Kamarudin
Ammar Zakaria
Intan Kartika Kamarudin
Muhammad Amin Ibrahim
Hiromitsu Nishizaki
Masahiro Toyoura
Xiaoyang Mao
Source :
Sensors, Vol 22, Iss 14, p 5249 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Ultra-wideband radar application for sleep breathing monitoring is hampered by the difficulty of obtaining breathing signals for non-stationary subjects. This occurs due to imprecise signal clutter removal and poor body movement removal algorithms for extracting accurate breathing signals. Therefore, this paper proposed a Sleep Breathing Detection Algorithm (SBDA) to address this challenge. First, SBDA introduces the combination of variance feature with Discrete Wavelet Transform (DWT) to tackle the issue of clutter signals. This method used Daubechies wavelets with five levels of decomposition to satisfy the signal-to-noise ratio in the signal. Second, SBDA implements a curve fit based sinusoidal pattern algorithm for detecting periodic motion. The measurement was taken by comparing the R-square value to differentiate between chest and body movements. Last but not least, SBDA applied the Ensemble Empirical Mode Decomposition (EEMD) method for extracting breathing signals before transforming the signal to the frequency domain using Fast Fourier Transform (FFT) to obtain breathing rate. The analysis was conducted on 15 subjects with normal and abnormal ratings for sleep monitoring. All results were compared with two existing methods obtained from previous literature with Polysomnography (PSG) devices. The result found that SBDA effectively monitors breathing using IR-UWB as it has the lowest average percentage error with only 6.12% compared to the other two existing methods from past research implemented in this dataset.

Details

Language :
English
ISSN :
22145249 and 14248220
Volume :
22
Issue :
14
Database :
Directory of Open Access Journals
Journal :
Sensors
Publication Type :
Academic Journal
Accession number :
edsdoj.0c7ed8668d304aefb0d39ebe614f8faf
Document Type :
article
Full Text :
https://doi.org/10.3390/s22145249