Back to Search Start Over

Chirality hierarchical transfer in homochiral polymer crystallization under high-pressure CO2

Authors :
Lei Zhang
Guoqun Zhao
Zhiping Chen
Xianhang Yan
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-11 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Ordered phase transitions are commonly correlated to symmetry breaking, while disordered phase transitions are characterized by symmetry restoration. Nevertheless, this study demonstrates that these correlation relations are not always applicable in chiral polymers under high-pressure Carbon Dioxide. Without racemization, homochiral Poly (lactide acid) can generate two vortex-shaped dendritic crystals with opposite spiral chirality, and snowflake-shaped dendritic crystals without spiral chirality. The transition from homochiral molecules to achiral crystals signifies the chiral symmetry restoration during the ordering process. The primary elements responsible for the various hierarchical transfers of homochiral Poly (lactide acid) are related to chain tilt, surface stress, and frustrated structures of Poly (lactide acid) crystals. Here, we show the entropy impact of Carbon Dioxide can be utilized to programmatically regulate the morphological chirality of crystal superstructure and crystal form of homochiral Poly (lactide acid).

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.0c9a4b82edef432d8576c8e22c226ab6
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-51292-y