Back to Search Start Over

Anti-Inflammatory Activity of 1,6,7-Trihydroxy-2-(1,1-dimethyl-2-propenyl)-3-methoxyxanthone Isolated from Cudrania tricuspidata via NF-κB, MAPK, and HO-1 Signaling Pathways in Lipopolysaccharide-Stimulated RAW 264.7 and BV2 Cells

Authors :
Wonmin Ko
Jong-Suep Baek
Zhiming Liu
Linsha Dong
Nayeon Kim
Hwan Lee
Chi-Su Yoon
Na Young Kim
Sam Cheol Kim
Dong-Sung Lee
Source :
Molecules, Vol 28, Iss 21, p 7299 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Neuroinflammation activated by microglia affects inflammatory pain development. This study aimed to explore the anti-inflammatory properties and mechanisms of 1,6,7-trihydroxy-2-(1,1-dimethyl-2-propenyl)-3-methoxyxanthone (THMX) from Cudrania tricuspidata in microglia activation-mediated inflammatory pain. In RAW 264.7 and BV2 cells, THMX has been shown to reduce lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and pro-inflammatory mediators and cytokines, including nitric oxide (NO), prostaglandin (PG) E2, interleukin (IL)-6, and tumor necrosis factor alpha (TNF-α). THMX also decreased LPS-induced phosphorylation of mitogen-activated protein kinase (MAPK) and the activation of p65 nuclear factor kappa B (NF-κB). Interestingly, THMX also activated heme oxygenase (HO)-1 expression. These findings suggest that THMX is a promising biologically active compound against inflammation through preventing MAPKs and NF-ĸB and activating HO-1 signaling pathways.

Details

Language :
English
ISSN :
14203049
Volume :
28
Issue :
21
Database :
Directory of Open Access Journals
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
edsdoj.0d2cc0e3b0ad42bcaba1a19e16f73582
Document Type :
article
Full Text :
https://doi.org/10.3390/molecules28217299