Back to Search Start Over

Understanding the role of imidazolium-based ionic liquids in the electrochemical CO2 reduction reaction

Authors :
Alessia Fortunati
Francesca Risplendi
Michele Re Fiorentin
Giancarlo Cicero
Emmanuele Parisi
Micaela Castellino
Elena Simone
Boyan Iliev
Thomas J. S. Schubert
Nunzio Russo
Simelys Hernández
Source :
Communications Chemistry, Vol 6, Iss 1, Pp 1-13 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract The development of efficient CO2 capture and utilization technologies driven by renewable energy sources is mandatory to reduce the impact of climate change. Herein, seven imidazolium-based ionic liquids (ILs) with different anions and cations were tested as catholytes for the CO2 electrocatalytic reduction to CO over Ag electrode. Relevant activity and stability, but different selectivities for CO2 reduction or the side H2 evolution were observed. Density functional theory results show that depending on the IL anions the CO2 is captured or converted. Acetate anions (being strong Lewis bases) enhance CO2 capture and H2 evolution, while fluorinated anions (being weaker Lewis bases) favour the CO2 electroreduction. Differently from the hydrolytically unstable 1-butyl-3-methylimidazolium tetrafluoroborate, 1-Butyl-3-Methylimidazolium Triflate was the most promising IL, showing the highest Faradaic efficiency to CO (>95%), and up to 8 h of stable operation at high current rates (−20 mA & −60 mA), which opens the way for a prospective process scale-up.

Subjects

Subjects :
Chemistry
QD1-999

Details

Language :
English
ISSN :
23993669
Volume :
6
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Communications Chemistry
Publication Type :
Academic Journal
Accession number :
edsdoj.0d56a3ae546a4be088f17635da0d7
Document Type :
article
Full Text :
https://doi.org/10.1038/s42004-023-00875-9