Back to Search Start Over

Orbital Uncertainty Propagation Based on Adaptive Gaussian Mixture Model under Generalized Equinoctial Orbital Elements

Authors :
Hui Xie
Tianru Xue
Wenjun Xu
Gaorui Liu
Haibin Sun
Shengli Sun
Source :
Remote Sensing, Vol 15, Iss 19, p 4652 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

The number of resident space objects (RSOs) has been steadily increasing over time, posing significant risks to the safe operation of on-orbit assets. The accurate prediction of potential collision events and implementation of effective and nonredundant avoidance maneuvers require the precise estimation of the orbit positions of objects of interest and propagation of their associated uncertainties. Previous research mainly focuses on striking a balance between accurate propagation and efficient computation. A recently proposed approach that integrates uncertainty propagation with different coordinate representations has the potential to achieve such a balance. This paper proposes combining the generalized equinoctial orbital elements (GEqOE) representation with an adaptive Gaussian mixture model (GMM) for uncertainty propagation. Specifically, we implement a reformulation for the orbital dynamics so that the underlying state and the moment feature of the GMM are propagated under the GEqOE coordinates. Starting from an initial Gaussian probability distribution function (PDF), the algorithm iteratively propagates the uncertainty distribution using a detection-splitting module. A differential entropy-based nonlinear detector and a splitting library are utilized to adjust the number of GMM components dynamically. Component splitting is triggered when a predefined threshold of differential entropy is violated, generating several GMM components. The final probability density function (PDF) is obtained by a weighted summation of the component distributions at the target time. Benefiting from the nonlinearity reduction caused by the GEqOE representation, the number of triggered events largely decreases, causing the necessary number of components to maintain uncertainty realism also to decrease, which enables the proposed approach to achieve good performance with much more efficiency. As demonstrated by the results of propagation in three scenarios with different degrees of complexity, compared with the Cartesian-based approach, the proposed approach achieves comparable accuracy to the Monte Carlo method while largely reducing the number of components generated during propagation. Our results confirm that a judicious choice of coordinate representation can significantly improve the performance of uncertainty propagation methods in terms of accuracy and computational efficiency.

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
19
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.0d9b689aea8b49a4b4dcbfb502f070b5
Document Type :
article
Full Text :
https://doi.org/10.3390/rs15194652