Back to Search Start Over

Study on Soil Freeze–Thaw and Surface Deformation Patterns in the Qilian Mountains Alpine Permafrost Region Using SBAS-InSAR Technique

Authors :
Zelong Xue
Shangmin Zhao
Bin Zhang
Source :
Remote Sensing, Vol 16, Iss 23, p 4595 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

The Qilian Mountains, located on the northeastern edge of the Qinghai–Tibet Plateau, are characterized by unique high-altitude and cold-climate terrain, where permafrost and seasonally frozen ground are extensively distributed. In recent years, with global warming and increasing precipitation on the Qinghai–Tibet Plateau, permafrost degradation has become severe, further exacerbating the fragility of the ecological environment. Therefore, timely research on surface deformation and the freeze–thaw patterns of alpine permafrost in the Qilian Mountains is imperative. This study employs Sentinel-1A SAR data and the SBAS-InSAR technique to monitor surface deformation in the alpine permafrost regions of the Qilian Mountains from 2017 to 2023. A method for spatiotemporal interpolation of ascending and descending orbit results is proposed to calculate two-dimensional surface deformation fields further. Moreover, by constructing a dynamic periodic deformation model, the study more accurately summarizes the regular changes in permafrost freeze–thaw and the trends in seasonal deformation amplitudes. The results indicate that the surface deformation time series in both vertical and east–west directions obtained using this method show significant improvements in accuracy over the initial data, allowing for a more precise reflection of the dynamic processes of surface deformation in the study area. Subsidence is predominant in permafrost areas, while uplift mainly occurs in seasonally frozen ground areas near lakes and streams. The average vertical deformation rate is 1.56 mm/a, with seasonal amplitudes reaching 35 mm. Topographical (elevation; slope gradient; aspect) and climatic factors (temperature; soil moisture; precipitation) play key roles in deformation patterns. The deformation of permafrost follows five distinct phases: summer thawing; warm-season stability; frost heave; winter cooling; and spring thawing. This study enhances our understanding of permafrost deformation characteristics in high-latitude and high-altitude regions, providing a reference for preventing geological disasters in the Qinghai–Tibet Plateau area and offering theoretical guidance for regional ecological environmental protection and infrastructure safety.

Details

Language :
English
ISSN :
20724292
Volume :
16
Issue :
23
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.0f363e2bf4bd4626acb97183e5632239
Document Type :
article
Full Text :
https://doi.org/10.3390/rs16234595