Back to Search Start Over

Identification of microRNAs implicated in modulating resveratrol-induced apoptosis in porcine granulosa cells

Authors :
Huibin Zhang
Jinglin Wang
Fan Xie
Yangguang Liu
Mengyao Qiu
Zheng Han
Yueyun Ding
Xianrui Zheng
Zongjun Yin
Xiaodong Zhang
Source :
Frontiers in Cell and Developmental Biology, Vol 11 (2023)
Publication Year :
2023
Publisher :
Frontiers Media S.A., 2023.

Abstract

MicroRNAs (miRNAs) are small, noncoding RNAs that play a crucial role in the complex and dynamic network that regulates the apoptosis of porcine ovarian granulosa cells (POGCs). Resveratrol (RSV) is a nonflavonoid polyphenol compound that is involved in follicular development and ovulation. In previous study, we established a model of RSV treatment of POGCs, confirming the regulatory effect of RSV in POGCs. To investigate the miRNA-level effects of RSV on POGCs to reveal differentially expressed miRNAs, a control group (n = 3, 0 μM RSV group), a low RSV group (n = 3, 50 μM RSV group), and a high RSV group (n = 3, 100 μM RSV group) were created for small RNA-seq. In total, 113 differentially expressed miRNAs (DE-miRNAs) were identified, and a RT-qPCR analysis showed a correlation with the sequencing data. Functional annotation analysis revealed that DE-miRNAs in the LOW vs. CON group may be involved in cell development, proliferation, and apoptosis. In the HIGH vs. CON group, RSV functions were associated with metabolic processes and responses to stimuli, while the pathways were related to PI3K24, Akt, Wnt, and apoptosis. In addition, we constructed miRNA-mRNA networks related to Apoptosis and Metabolism. Then, ssc-miR-34a and ssc-miR-143-5p were selected as key miRNAs. In conclusion, this study provided an improved understanding of effects of RSV on POGCs apoptosis through the miRNA modulations. The results suggest that RSV may promote POGCs apoptosis by stimulating the miRNA expressions and provided a better understanding of the role of miRNAs combined with RSV in ovarian granulosa cell development in pigs.

Details

Language :
English
ISSN :
2296634X
Volume :
11
Database :
Directory of Open Access Journals
Journal :
Frontiers in Cell and Developmental Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.0f41d6dc0ece46d1bca368b41f8d8c5c
Document Type :
article
Full Text :
https://doi.org/10.3389/fcell.2023.1169745