Back to Search Start Over

Circadian clock-dependent increase in salivary IgA secretion modulated by sympathetic receptor activation in mice

Authors :
Misaki Wada
Kanami Orihara
Mayo Kamagata
Koki Hama
Hiroyuki Sasaki
Atsushi Haraguchi
Hiroki Miyakawa
Atsuhito Nakao
Shigenobu Shibata
Source :
Scientific Reports, Vol 7, Iss 1, Pp 1-12 (2017)
Publication Year :
2017
Publisher :
Nature Portfolio, 2017.

Abstract

Abstract The salivary gland is rhythmically controlled by sympathetic nerve activation from the suprachiasmatic nucleus (SCN), which functions as the main oscillator of circadian rhythms. In humans, salivary IgA concentrations reflect circadian rhythmicity, which peak during sleep. However, the mechanisms controlling this rhythmicity are not well understood. Therefore, we examined whether the timing of parasympathetic (pilocarpine) or sympathetic (norepinephrine; NE) activation affects IgA secretion in the saliva. The concentrations of saliva IgA modulated by pilocarpine activation or by a combination of pilocarpine and NE activation were the highest in the middle of the light period, independent of saliva flow rate. The circadian rhythm of IgA secretion was weakened by an SCN lesion and Clock gene mutation, suggesting the importance of the SCN and Clock gene on this rhythm. Adrenoceptor antagonists blocked both NE- and pilocarpine-induced basal secretion of IgA. Dimeric IgA binds to the polymeric immunoglobulin receptor (pIgR) on the basolateral surface of epithelial cells and forms the IgA-pIgR complex. The circadian rhythm of Pigr abundance peaked during the light period, suggesting pIgR expression upon rhythmic secretion of IgA. We speculate that activation of sympathetic nerves during sleep may protect from bacterial access to the epithelial surface through enhanced secretion of IgA.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322 and 04030931
Volume :
7
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.0f58c15365a040309315187c35317f49
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-017-09438-0