Back to Search Start Over

Synthesis, Biological Evaluation, and Structure–Activity Relationships of 4-Aminopiperidines as Novel Antifungal Agents Targeting Ergosterol Biosynthesis

Authors :
Jürgen Krauß
Christoph Müller
Monika Klimt
Leandro Jorquera Valero
José Francisco Martínez
Martin Müller
Karin Bartel
Ulrike Binder
Franz Bracher
Source :
Molecules, Vol 26, Iss 23, p 7208 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

The aliphatic heterocycles piperidine and morpholine are core structures of well-known antifungals such as fenpropidin and fenpropimorph, commonly used as agrofungicides, and the related morpholine amorolfine is approved for the treatment of dermal mycoses in humans. Inspired by these lead structures, we describe here the synthesis and biological evaluation of 4-aminopiperidines as a novel chemotype of antifungals with remarkable antifungal activity. A library of more than 30 4-aminopiperidines was synthesized, starting from N-substituted 4-piperidone derivatives by reductive amination with appropriate amines using sodium triacetoxyborohydride. Antifungal activity was determined on the model strain Yarrowia lipolytica, and some compounds showed interesting growth-inhibiting activity. These compounds were tested on 20 clinically relevant fungal isolates (Aspergillus spp., Candida spp., Mucormycetes) by standardized microbroth dilution assays. Two of the six compounds, 1-benzyl-N-dodecylpiperidin-4-amine and N-dodecyl-1-phenethylpiperidin-4-amine, were identified as promising candidates for further development based on their in vitro antifungal activity against Candida spp. and Aspergillus spp. Antifungal activity was determined for 18 Aspergillus spp. and 19 Candida spp., and their impact on ergosterol and cholesterol biosynthesis was determined. Toxicity was determined on HL-60, HUVEC, and MCF10A cells, and in the alternative in vivo model Galleria mellonella. Analysis of sterol patterns after incubation gave valuable insights into the putative molecular mechanism of action, indicating inhibition of the enzymes sterol C14-reductase and sterol C8-isomerase in fungal ergosterol biosynthesis.

Details

Language :
English
ISSN :
14203049
Volume :
26
Issue :
23
Database :
Directory of Open Access Journals
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
edsdoj.0f65cc090474ba8b727559d6d19935f
Document Type :
article
Full Text :
https://doi.org/10.3390/molecules26237208