Back to Search Start Over

Single-Shot Local Injection of Microfragmented Fat Tissue Loaded with Paclitaxel Induces Potent Growth Inhibition of Hepatocellular Carcinoma in Nude Mice

Authors :
Giulio Alessandri
Augusto Pessina
Rita Paroni
Luisa Bercich
Francesca Paino
Michele Dei Cas
Moris Cadei
Arnaldo Caruso
Marco Schiariti
Francesco Restelli
Offer Zeira
Carlo Tremolada
Nazario Portolani
Source :
Cancers, Vol 13, Iss 21, p 5505 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Hepatocellular carcinoma (HCC) is poorly beneficiated by intravenous chemotherapy due to inadequate availability of drugs at the tumor site. We previously demonstrated that human micro-fragmented adipose tissue (MFAT) and its devitalized counterpart (DMFAT) could be effective natural scaffolds to deliver Paclitaxel (PTX) to tumors in both in vitro and in vivo tests, affecting cancer growth relapse. Here we tested the efficacy of DMFAT-PTX in a well-established HCC in nude mice. MFAT-PTX and DMFAT-PTX preparations were tested for anti-cancer activity in 2D and 3D assays using Hep-3B tumor cells. The efficacy of DMFAT-PTX was evaluated after a single-shot subcutaneous injection near a Hep-3B growing tumor by assessing tumor volumes, apoptosis rate, and drug pharmacokinetics in an in vivo model. Potent antiproliferative activity was seen in both in vitro 2D and 3D tests. Mice treated with DMFAT-PTX (10 mg/kg) produced potent Hep-3B growth inhibition with 33% complete tumor regressions. All treated animals experienced tumor ulceration at the site of DMFAT-PTX injection, which healed spontaneously. Lowering the drug concentration (5 mg/kg) prevented the formation of ulcers, maintaining statistically significant efficacy. Histology revealed a higher number of apoptotic cancer cells intratumorally, suggesting prolonged presence of PTX that was confirmed by the pharmacokinetic analysis. DMFAT may be a potent and valid new tool for local chemotherapy of HCC in an advanced stage of progression, also suggesting potential effectiveness in other human primary inoperable cancers.

Details

Language :
English
ISSN :
20726694
Volume :
13
Issue :
21
Database :
Directory of Open Access Journals
Journal :
Cancers
Publication Type :
Academic Journal
Accession number :
edsdoj.0f6baa87087a4237828c5129b3285387
Document Type :
article
Full Text :
https://doi.org/10.3390/cancers13215505