Back to Search Start Over

Head movement dynamics in dystonia: a multi-centre retrospective study using visual perceptive deep learning

Authors :
Robert Peach
Maximilian Friedrich
Lara Fronemann
Muthuraman Muthuraman
Sebastian R. Schreglmann
Daniel Zeller
Christoph Schrader
Joachim K. Krauss
Alfons Schnitzler
Matthias Wittstock
Ann-Kristin Helmers
Steffen Paschen
Andrea Kühn
Inger Marie Skogseid
Wilhelm Eisner
Joerg Mueller
Cordula Matthies
Martin Reich
Jens Volkmann
Chi Wang Ip
Source :
npj Digital Medicine, Vol 7, Iss 1, Pp 1-11 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Dystonia is a neurological movement disorder characterised by abnormal involuntary movements and postures, particularly affecting the head and neck. However, current clinical assessment methods for dystonia rely on simplified rating scales which lack the ability to capture the intricate spatiotemporal features of dystonic phenomena, hindering clinical management and limiting understanding of the underlying neurobiology. To address this, we developed a visual perceptive deep learning framework that utilizes standard clinical videos to comprehensively evaluate and quantify disease states and the impact of therapeutic interventions, specifically deep brain stimulation. This framework overcomes the limitations of traditional rating scales and offers an efficient and accurate method that is rater-independent for evaluating and monitoring dystonia patients. To evaluate the framework, we leveraged semi-standardized clinical video data collected in three retrospective, longitudinal cohort studies across seven academic centres. We extracted static head angle excursions for clinical validation and derived kinematic variables reflecting naturalistic head dynamics to predict dystonia severity, subtype, and neuromodulation effects. The framework was also applied to a fully independent cohort of generalised dystonia patients for comparison between dystonia sub-types. Computer vision-derived measurements of head angle excursions showed a strong correlation with clinically assigned scores. Across comparisons, we identified consistent kinematic features from full video assessments encoding information critical to disease severity, subtype, and effects of neural circuit interventions, independent of static head angle deviations used in scoring. Our visual perceptive machine learning framework reveals kinematic pathosignatures of dystonia, potentially augmenting clinical management, facilitating scientific translation, and informing personalized precision neurology approaches.

Details

Language :
English
ISSN :
23986352 and 95360964
Volume :
7
Issue :
1
Database :
Directory of Open Access Journals
Journal :
npj Digital Medicine
Publication Type :
Academic Journal
Accession number :
edsdoj.0fbad953609640cea57e36f47712b111
Document Type :
article
Full Text :
https://doi.org/10.1038/s41746-024-01140-6