Back to Search Start Over

Gene coexpression network during ontogeny in the yellow fever mosquito, Aedes aegypti

Authors :
Zhinan Lin
Yuqi Huang
Sihan Liu
Qiwen Huang
Biliang Zhang
Tianpeng Wang
Ziding Zhang
Xiaowei Zhu
Chenghong Liao
Qian Han
Source :
BMC Genomics, Vol 24, Iss 1, Pp 1-15 (2023)
Publication Year :
2023
Publisher :
BMC, 2023.

Abstract

Abstract Background The behaviors and ontogeny of Aedes aegypti are closely related to the spread of diseases caused by dengue (DENV), chikungunya (CHIKV), Zika (ZIKV), and yellow fever (YFV) viruses. During the life cycle, Ae. aegypti undergoes drastic morphological, metabolic, and functional changes triggered by gene regulation and other molecular mechanisms. Some essential regulatory factors that regulate insect ontogeny have been revealed in other species, but their roles are still poorly investigated in the mosquito. Results Our study identified 6 gene modules and their intramodular hub genes that were highly associated with the ontogeny of Ae. aegypti in the constructed network. Those modules were found to be enriched in functional roles related to cuticle development, ATP generation, digestion, immunity, pupation control, lectins, and spermatogenesis. Additionally, digestion-related pathways were activated in the larvae and adult females but suppressed in the pupae. The integrated protein‒protein network also identified cilium-related genes. In addition, we verified that the 6 intramodular hub genes encoding proteins such as EcKinase regulating larval molt were only expressed in the larval stage. Quantitative RT‒PCR of the intramodular hub genes gave similar results as the RNA-Seq expression profile, and most hub genes were ontogeny-specifically expressed. Conclusions The constructed gene coexpression network provides a useful resource for network-based data mining to identify candidate genes for functional studies. Ultimately, these findings will be key in identifying potential molecular targets for disease control.

Details

Language :
English
ISSN :
14712164
Volume :
24
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Genomics
Publication Type :
Academic Journal
Accession number :
edsdoj.0fdcb26a724eada693a171e608354f
Document Type :
article
Full Text :
https://doi.org/10.1186/s12864-023-09403-4