Back to Search
Start Over
Joint Model Feature Regression and Topic Learning for Global Citation Recommendation
- Source :
- IEEE Access, Vol 7, Pp 1706-1720 (2019)
- Publication Year :
- 2019
- Publisher :
- IEEE, 2019.
-
Abstract
- Citation recommendation has gained increasing attention in recent years. In practice, researchers usually prefer to cite the most topic-relevant articles. Nevertheless, how to model the implicit correlations between topics and citations is still a challenging task. In this paper, we propose a novel citation recommendation model, called TopicCite, which mines such fine-grained correlations. We extract various citation features from citation network, and integrate the learning process of feature regression with topic modeling. At the recommendation stage, we expand the folding-in process by adding the topic influence of papers that correlated with user-provided information. TopicCite can also be considered a technique for extracting topic-related citation features from manually defined citation features, which can essentially improve the granularity of pre-extracted features. In addition, the unsupervised topic model is supervised and mutually reinforced by abundant citation features in TopicCite; thus, the proposed model can also extract more reliable topic distributions from citation data, which brings a new perspective to topic discovery on linked data. The experimental results on the AAN and DBLP datasets demonstrate that our model is competitive with the state-of-the-art methods.
Details
- Language :
- English
- ISSN :
- 21693536
- Volume :
- 7
- Database :
- Directory of Open Access Journals
- Journal :
- IEEE Access
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.10028dd5d034ee1ac6dfe0913871d7d
- Document Type :
- article
- Full Text :
- https://doi.org/10.1109/ACCESS.2018.2884981