Back to Search
Start Over
Decoding the centromeric nucleosome through CENP-N
- Source :
- eLife, Vol 6 (2017)
- Publication Year :
- 2017
- Publisher :
- eLife Sciences Publications Ltd, 2017.
-
Abstract
- Centromere protein (CENP) A, a histone H3 variant, is a key epigenetic determinant of chromosome domains known as centromeres. Centromeres nucleate kinetochores, multi-subunit complexes that capture spindle microtubules to promote chromosome segregation during mitosis. Two kinetochore proteins, CENP-C and CENP-N, recognize CENP-A in the context of a rare CENP-A nucleosome. Here, we reveal the structural basis for the exquisite selectivity of CENP-N for centromeres. CENP-N uses charge and space complementarity to decode the L1 loop that is unique to CENP-A. It also engages in extensive interactions with a 15-base pair segment of the distorted nucleosomal DNA double helix, in a position predicted to exclude chromatin remodelling enzymes. Besides CENP-A, stable centromere recruitment of CENP-N requires a coincident interaction with a newly identified binding motif on nucleosome-bound CENP-C. Collectively, our studies clarify how CENP-N and CENP-C decode and stabilize the non-canonical CENP-A nucleosome to enforce epigenetic centromere specification and kinetochore assembly.
Details
- Language :
- English
- ISSN :
- 2050084X
- Volume :
- 6
- Database :
- Directory of Open Access Journals
- Journal :
- eLife
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.10118af6b92425bb5254d424be03270
- Document Type :
- article
- Full Text :
- https://doi.org/10.7554/eLife.33442