Back to Search
Start Over
Negative Energy Solutions for a New Fractional px-Kirchhoff Problem without the (AR) Condition
- Source :
- Journal of Function Spaces, Vol 2021 (2021)
- Publication Year :
- 2021
- Publisher :
- Wiley, 2021.
-
Abstract
- In this paper, we investigate the following Kirchhoff type problem involving the fractional px-Laplacian operator. a−b∫Ω×Ωux−uypx,y/px,yx−yN+spx,ydxdyLu=λuqx−2u+fx,ux∈Ωu=0 x∈∂Ω,, where Ω is a bounded domain in ℝN with Lipschitz boundary, a≥b>0 are constants, px,y is a function defined on Ω¯×Ω¯, s∈0,1, and qx>1, Lu is the fractional px-Laplacian operator, N>spx,y, for any x,y∈Ω¯×Ω¯, px∗=px,xN/N−spx,x, λ is a given positive parameter, and f is a continuous function. By using Ekeland’s variational principle and dual fountain theorem, we obtain some new existence and multiplicity of negative energy solutions for the above problem without the Ambrosetti-Rabinowitz ((AR) for short) condition.
- Subjects :
- Mathematics
QA1-939
Subjects
Details
- Language :
- English
- ISSN :
- 23148896 and 23148888
- Volume :
- 2021
- Database :
- Directory of Open Access Journals
- Journal :
- Journal of Function Spaces
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.103ab518fabc46469210f511d3069566
- Document Type :
- article
- Full Text :
- https://doi.org/10.1155/2021/8888078