Back to Search Start Over

A Study on the Removal of Copper (II) from Aqueous Solution Using Lime Sand Bricks

Authors :
Xiaoran Zhang
Shimin Guo
Junfeng Liu
Ziyang Zhang
Kaihong Song
Chaohong Tan
Haiyan Li
Source :
Applied Sciences, Vol 9, Iss 4, p 670 (2019)
Publication Year :
2019
Publisher :
MDPI AG, 2019.

Abstract

Heavy metals such as Cu(II), if ubiquitous in the runoff, can have adverse effects on the environment and human health. Lime sand bricks, as low-cost adsorbents to be potentially applied in stormwater infiltration facilities, were systematically investigated for Cu(II) removal from water using batch and column experiments. In the batch experiment, the adsorption of Cu(II) to bricks reach an equilibrium within 7 h and the kinetic data fits well with the pseudo-second-order model. The sorption isotherm can be described by both the Freundlich and Langmuir model and the maximum adsorption capacity of the bricks is 7 ± 1 mg/g. In the column experiment, the best removal efficiency for Cu(II) was observed at a filler thickness of 20 cm, service time of 12 min with a Cu(II) concentration of 0.5 mg/L. The Cu(II) removal rate increases with the increasing bed depth and residence time. The inlet concentration and residence time had significant effects on the Cu(II) removal analyzed by the Box⁻Behnken design (BBD). The Adams-Bohart model was in good agreement with the experimental data in representing the breakthrough curve. Copper fractions in the bricks descend in the order of organic matter fraction > Fe-Mn oxides fraction > carbonates fraction > residual fraction > exchangeable fraction, indicating that the lime sand bricks after copper adsorption reduce the long-term ecotoxicity and bioavailability to the environment.

Details

Language :
English
ISSN :
20763417
Volume :
9
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Applied Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.10e5db4db43a47ab97ce43e2274a8033
Document Type :
article
Full Text :
https://doi.org/10.3390/app9040670