Back to Search Start Over

Iron-loaded Punica granatum peel: An effective biosorbent for the excision of arsenite from water

Authors :
Bishnu Datt Pant
Sangita Adhikari
Nabina Shrestha
Janaki Baral
Hari Paudyal
Kedar Nath Ghimire
Megh Raj Pokhrel
Bhoj Raj Poudel
Source :
Heliyon, Vol 10, Iss 17, Pp e37382- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

The occurrence of arsenic in the surroundings raises apprehension because its detrimental impacts on both human health and the ecology. Since adsorption is an effective, affordable method that can be adjusted to specific environmental circumstances, it is a sustainable solution for the removal of arsenic from the aquatic environment. Utilizing biomass that has been chemically activated may be a viable way to increase the adsorption capacity of the material, reduce arsenic pollution, and protect the environment and human health. In the proposed research, Fe(III) loaded saponified Punica granatum peel (Fe(III)-SPGP) has been synthesized to remove arsenic from aqueous solutions. FTIR and SEM analysis were utilized to carry out the characterization of the biosorbents. Batch experiments were carried out by altering several factors including pH and contact time, in addition to initial concentration and desorption. The most effective pH for As(III) adsorption using Fe(III)-SPGP was discovered to be 9.0. After determining that a pseudo-second-order kinetic model was the one that provided the greatest fit for the results of the experiment, the model developed by Langmuir was applied. It was discovered that the maximum adsorption of As(III) that could be adsorbed by Fe(III)-SPGP was 63.29 mg/g. The spent biosorbent may easily be reused again in subsequent applications. Based on these findings, Fe(III)-SPGP shows promise as a cheap effective sorbent for excising contaminants of As(III).

Details

Language :
English
ISSN :
24058440
Volume :
10
Issue :
17
Database :
Directory of Open Access Journals
Journal :
Heliyon
Publication Type :
Academic Journal
Accession number :
edsdoj.110f3c515604b3c9cccf1a4f329fae1
Document Type :
article
Full Text :
https://doi.org/10.1016/j.heliyon.2024.e37382