Back to Search Start Over

Strong nonlinear optical processes with extraordinary polarization anisotropy in inversion-symmetry broken two-dimensional PdPSe

Authors :
Song Zhu
Ruihuan Duan
Xiaodong Xu
Fangyuan Sun
Wenduo Chen
Fakun Wang
Siyuan Li
Ming Ye
Xin Zhou
Jinluo Cheng
Yao Wu
Houkun Liang
Junichiro Kono
Xingji Li
Zheng Liu
Qi Jie Wang
Source :
Light: Science & Applications, Vol 13, Iss 1, Pp 1-10 (2024)
Publication Year :
2024
Publisher :
Nature Publishing Group, 2024.

Abstract

Abstract Nonlinear optical activities, especially second harmonic generation (SHG), are key phenomena in inversion-symmetry-broken two-dimensional (2D) transition metal dichalcogenides (TMDCs). On the other hand, anisotropic nonlinear optical processes are important for unique applications in nano-nonlinear photonic devices with polarization functions, having become one of focused research topics in the field of nonlinear photonics. However, the strong nonlinearity and strong optical anisotropy do not exist simultaneously in common 2D materials. Here, we demonstrate strong second-order and third-order susceptibilities of 64 pm/V and 6.2×10−19 m2/V2, respectively, in the even-layer PdPSe, which has not been discovered in other common TMDCs (e.g., MoS2). Strikingly, it also simultaneously exhibited strong SHG anisotropy with an anisotropic ratio of ~45, which is the largest reported among all 2D materials to date, to the best of our knowledge. In addition, the SHG anisotropy ratio can be harnessed from 0.12 to 45 (375 times) by varying the excitation wavelength due to the dispersion of $${\chi }^{(2)}$$ χ ( 2 ) values. As an illustrative example, we further demonstrate polarized SHG imaging for potential applications in crystal orientation identification and polarization-dependent spatial encoding. These findings in 2D PdPSe are promising for nonlinear nanophotonic and optoelectronic applications.

Details

Language :
English
ISSN :
20477538
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Light: Science & Applications
Publication Type :
Academic Journal
Accession number :
edsdoj.11275e7acc54ace9c0bead5b740a707
Document Type :
article
Full Text :
https://doi.org/10.1038/s41377-024-01474-6