Back to Search Start Over

Ground Observations and Environmental Covariates Integration for Mapping of Soil Salinity: A Machine Learning-Based Approach

Authors :
Salman Naimi
Shamsollah Ayoubi
Mojtaba Zeraatpisheh
Jose Alexandre Melo Dematte
Source :
Remote Sensing, Vol 13, Iss 23, p 4825 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Soil salinization is a severe danger to agricultural activity in arid and semi-arid areas, reducing crop production and contributing to land destruction. This investigation aimed to utilize machine learning algorithms to predict spatial soil salinity (dS m−1) by combining environmental covariates derived from remotely sensed (RS) data, a digital elevation model (DEM), and proximal sensing (PS). The study is located in an arid region, southern Iran (52°51′–53°02′E; 28°16′–28°29′N), in which we collected 300 surface soil samples and acquired the spectral data with RS (Sentinel-2) and PS (electromagnetic induction instrument (EMI) and portable X-ray fluorescence (pXRF)). Afterward, we analyzed the data using five machine learning methods as follows: random forest—RF, k-nearest neighbors—kNN, support vector machines—SVM, partial least squares regression—PLSR, artificial neural networks—ANN, and the ensemble of individual models. To estimate the electrical conductivity of the saturated paste extract (ECe), we built three scenarios, including Scenario (1): Synthetic Soil Image (SySI) bands and salinity indices derived from it; Scenario (2): RS data, PS data, topographic attributes, and geology and geomorphology maps; and Scenario (3): the combination of Scenarios (1) and (2). The best prediction accuracy was obtained for the RF model in Scenario (3) (R2 = 0.48 and RMSE = 2.49), followed by Scenario (2) (RF model, R2 = 0.47 and RMSE = 2.50) and Scenario (1) for the SVM model (R2 = 0.26 and RMSE = 2.97). According to ensemble modeling, a combined strategy with the five models exceeded the performance of all the single ones and predicted soil salinity in all scenarios. The results revealed that the ensemble modeling method had higher reliability and more accurate predictive soil salinity than the individual approach. Relative improvement (RI%) showed that the R2 index in the ensemble model improved compared to the most precise prediction for the Scenarios (1), (2), and (3) with 120.95%, 56.82%, and 66.71%, respectively. We applied the best model in each scenario for mapping the soil salinity in the selected area, which indicated that ECe tended to increase from the northwestern to south and southeastern regions. The area with high ECe was located in the regions that mainly had low elevations and playa. The areas with low ECe were located in the higher elevations with steeper slopes and alluvial fans, and thus, relief had great importance. This study provides a precise, cost-effective, and scientific base prediction for decision-making purposes to map soil salinity in arid regions.

Details

Language :
English
ISSN :
20724292
Volume :
13
Issue :
23
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.113fc47f57804029960ce26c096644ec
Document Type :
article
Full Text :
https://doi.org/10.3390/rs13234825