Back to Search Start Over

Integrating data from asymmetric multi-models can identify drought-resistant groundnut genotypes for drought hot-spot locations

Authors :
B. C. Ajay
Narendra Kumar
Praveen Kona
K. Gangadhar
Kirti Rani
G. A. Rajanna
S. K. Bera
Source :
Scientific Reports, Vol 13, Iss 1, Pp 1-11 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Water/drought stress experiments are frequently conducted under imposed stress or rainout shelters, while natural drought hot-spot investigations are rare. The “drought hot spot” in Anantapur, Andhra Pradesh, India, is appropriate for drought stress evaluation due to its hot, arid environment, limited rainfall, with over 50% rainfall variability. According to reports, 30 out of 200 groundnut cultivars in India are supposed to possess drought-tolerant characteristics. However, these cultivars are yet to be evaluated in areas that are prone to drought. This study tested these drought-tolerant genotypes in naturally drought-prone areas of Anantapur under rainfed conditions from Kharif 2017 to 2019. Pod yield and rainfall-use-efficiency (RUE) were measured for these genotypes. Genotype and genotype*environment interactions affected pod yield and RUE (GEI). The AMMI model exhibits significant season-to-season variability within the same area with environmental vectors > 90° angles. GGE biplot suggested the 2018 wet season for drought-resistant cultivar identification. Kadiri5 and GPBD5 were the most drought-tolerant cultivars for cultivation in Anantapur and adjacent regions. These types could also be used to generate drought-tolerant groundnut variants for drought-prone regions.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.11880c1a1ede45ffbb139eb70c8cdcd5
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-023-38581-0