Back to Search Start Over

A functional role of S100A4/non-muscle myosin IIA axis for pro-tumorigenic vascular functions in glioblastoma

Authors :
Madoca Inukai
Ako Yokoi
Yuuki Ishizuka
Miki Hashimura
Toshihide Matsumoto
Yasuko Oguri
Mayu Nakagawa
Yu Ishibashi
Takashi Ito
Toshihiro Kumabe
Makoto Saegusa
Source :
Cell Communication and Signaling, Vol 20, Iss 1, Pp 1-13 (2022)
Publication Year :
2022
Publisher :
BMC, 2022.

Abstract

Abstract Background Glioblastoma (GBM) is the most aggressive form of brain tumor and has vascular-rich features. The S100A4/non-muscle myosin IIA (NMIIA) axis contributes to aggressive phenotypes in a variety of human malignancies, but little is known about its involvement in GBM tumorigenesis. Herein, we examined the role of the S100A4/NMIIA axis during tumor progression and vasculogenesis in GBM. Methods We performed immunohistochemistry for S100A4, NMIIA, and two hypoxic markers, hypoxia-inducible factor-1α (HIF-1α) and carbonic anhydrase 9 (CA9), in samples from 94 GBM cases. The functional impact of S100A4 knockdown and hypoxia were also assessed using a GBM cell line. Results In clinical GBM samples, overexpression of S100A4 and NMIIA was observed in both non-pseudopalisading (Ps) and Ps (-associated) perinecrotic lesions, consistent with stabilization of HIF-1α and CA9. CD34(+) microvascular densities (MVDs) and the interaction of S100A4 and NMIIA were significantly higher in non-Ps perinecrotic lesions compared to those in Ps perinecrotic areas. In non-Ps perinecrotic lesions, S100A4(+)/HIF-1α(−) GBM cells were recruited to the surface of preexisting host vessels in the vascular-rich areas. Elevated vascular endothelial growth factor A (VEGFA) mRNA expression was found in S100A4(+)/HIF-1α(+) GBM cells adjacent to the vascular-rich areas. In addition, GBM patients with high S100A4 protein expression had significantly worse OS and PFS than did patients with low S100A4 expression. Knockdown of S100A4 in the GBM cell line KS-1 decreased migration capability, concomitant with decreased Slug expression; the opposite effects were elicited by blebbistatin-dependent inhibition of NMIIA. Conclusion S100A4(+)/HIF-1α(−) GBM cells are recruited to (and migrate along) preexisting vessels through inhibition of NMIIA activity. This is likely stimulated by extracellular VEGF that is released by S100A4(+)/HIF-1α(+) tumor cells in non-Ps perinecrotic lesions. In turn, these events engender tumor progression via acceleration of pro-tumorigenic vascular functions. Video abstract

Details

Language :
English
ISSN :
1478811X
Volume :
20
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Cell Communication and Signaling
Publication Type :
Academic Journal
Accession number :
edsdoj.118c5815b145431691a61bb8411d35b5
Document Type :
article
Full Text :
https://doi.org/10.1186/s12964-022-00848-w